ﻻ يوجد ملخص باللغة العربية
Work extraction from a heat engine in a cycle by a quantum mechanical device (quantum piston) is analyzed. The standard definition of work fails in the quantum domain. The correct extractable work and its efficiency bound are shown to crucially depend on the initial quantum state of the piston. The transient efficiency bound may exceed the standard Carnot bound, although it complies with the second law. Energy gain (e.g. in lasing) is shown to drastically differ from work gain.
Quantum theory allows for randomness generation in a device-independent setting, where no detailed description of the experimental device is required. Here we derive a general upper bound on the amount of randomness that can be generated in such a se
We identify that quantum coherence is a valuable resource in the quantum heat engine, which is designed in a quantum thermodynamic cycle assisted by a quantum Maxwells demon. This demon is in a superposed state. The quantum work and heat are redefine
The thermodynamic properties of quantum heat engines are stochastic owing to the presence of thermal and quantum fluctuations. We here experimentally investigate the efficiency and nonequilibrium entropy production statistics of a spin-1/2 quantum Ot
We consider the production of charmed baryons and mesons in the proton-antiproton binary reactions at the energies of the future $bar{P}$ANDA experiment. To describe these processes in terms of hadronic interaction models, one needs strong couplings
This paper gives a simple proof of why a quantum computer, despite being in all possible states simultaneously, needs at least 0.707 sqrt(N) queries to retrieve a desired item from an unsorted list of items. The proof is refined to show that a quantu