ﻻ يوجد ملخص باللغة العربية
We present new results on the X-ray spectroscopy of multicharged argon, sulfur and chlorine obtained with the Electron Cyclotron Resonance Ion Trap (ECRIT) in operation at the Paul Scherrer Institut (Villigen, Switzerland). We used a Johann-type Bragg spectrometer with a spherically-bent crystal, with an energy resolution of about 0.4 eV. The ECRIT itself is of a hybrid type, with a superconducting split coil magnet, special iron inserts which provides the mirror field, and a permanent magnetic hexapole. The high frequency was provided by a 6.4 GHz microwave emitter. We obtained high intensity X-ray spectra of multicharged F-like to He-like argon, sulfur and chlorine with one 1s hole. In particular, we observed the $1s2s^{3}S_1 to 1s^2^{1}S_0 M1$ and $1s2p^{3}P_2 to 1s^2^{1}S_0 M2$ transitions in He-like argon, sulfur and chlorine with unprecedented statistics and resolution. The energies of the observed lines are being determined with good accuracy using the He-like M1 line as a reference.
We performed a reference-free measurement of the transition energies of the $1s 2p,^1P_1to 1s^2 ,^1S_0$ line in He-like argon, and of the $1s 2s^2 2p,^1P_1to 1s^2 2s^2,^1S_0$ line in Be-like argon ions. The highly-charged ions were produced in the pl
We present a theoretical investigation of dielectronic recombination (DR) of Ar-like ions that sheds new light on the behavior of the rate coefficient at low-temperatures where these ions form in photoionized plasmas. We provide results for the total
The interelectronic-interaction effect on the transition probabilities in high-Z He-like ions is investigated within a systematic quantum electrodynamic approach. The calculation formulas for the interelectronic-interaction corrections of first order
A general formalism is used to express the long-range potential energies in inverse powers of the separation distance between two like atomic or molecular systems with $P$ symmetries. The long-range molecular interaction coefficients are calculated f
We investigate the influence of relativistic nondipole effects on the photoelectron spectra of argon, particularly in the low kinetic energy region (0 eV - 5 eV). In our experiment, we use intense linearly polarised 800 nm laser pulse to ionise Ar fr