ﻻ يوجد ملخص باللغة العربية
We investigate the influence of relativistic nondipole effects on the photoelectron spectra of argon, particularly in the low kinetic energy region (0 eV - 5 eV). In our experiment, we use intense linearly polarised 800 nm laser pulse to ionise Ar from a jet and we record photoelectron energy and momentum distributions using a reaction microscope (REMI). Our measurements show that nondipole effect can cause an energy-dependent asymmetry along the laser propagation direction in the photoelectron energy and momentum spectra. Model simulation based on time-dependent Dirac equation (TDDE) can reproduce our measurement results. The electron trajectory analysis based on classical model reveals that the photoelectron which obtains negative momentum shift along laser propagation direction is caused by the interplay between the Lorenz force induced radiation pressure during its free propagation in continuum and re-scattering by Coulomb potential of the parent ion when it is driven back by the laser field.
Strong-field ionization of atoms by circularly polarized femtosecond laser pulses produces a donut-shaped electron momentum distribution. Within the dipole approximation this distribution is symmetric with respect to the polarization plane. The magne
The nondipole under-the-barrier dynamics of the electron during strong-field tunneling ionization is investigated, examining the role of the Coulomb field of the atomic core. The common analysis in the strong field approximation is consequently gener
We perform a phase-space analysis of strong-field enhanced ionisation in molecules, with emphasis on quantum-interference effects. Using Wigner quasi-probability distributions and the quantum Liouville equation, we show that the momentum gates report
The spin polarization of electrons from multiphoton ionization of Xe by 395 nm circularly polarized laser pulses at $6cdot10^{13}$ W/cm$^2$ has been measured. At this photon energy of 3.14 eV the above threshold ionization peaks connected to Xe$^+$ i
Observation of internal quantum dynamics relies on correlations between the system being observed and the measurement apparatus. We propose using the center-of-mass (c.m.) degrees of freedom of atoms and molecules as a built-in monitoring device for