ترغب بنشر مسار تعليمي؟ اضغط هنا

Development of a multi-pixel hybrid photo-detector with high quantum efficiency and gain

59   0   0.0 ( 0 )
 نشر من قبل Junji Haba
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A hybrid photo-detector (HPD) consisting of a photocathode and a multi-pixel avalanche diode (MP-AD) was developed a few years ago. Our previous studies showed that its inherent potential for high resolution photon counting could be further enhanced by reducing fluctuations in charge loss in the dead layer at the entrance of the MP-AD. In this paper, we report on the improvement with the newly developed HPD whose encapsulated MP-AD has a thinner dead layer than before. It is demonstrated that the new HPD has much better energy resolution, which enables clearer counting up to nine photoelectrons. Further enhancement of the photocathode sensitivity of the HPD is also discussed.

قيم البحث

اقرأ أيضاً

62 - D. Naito , Y. Maeda , N. Kawasaki 2015
We developed a low-mass and high-efficiency charged particle detector for an experimental study of the rare decay $K_L rightarrow pi^0 u bar{ u}$. The detector is important to suppress the background with charged particles to the level below the sig nal branching ratio predicted by the Standard Model (O(10$^{-11}$)). The detector consists of two layers of 3-mm-thick plastic scintillators with wavelength shifting fibers embedded and Multi Pixel Photon Counters for readout. We manufactured the counter and evaluated the performance such as light yield, timing resolution, and efficiency. With this design, we achieved the inefficiency per layer against penetrating charged particles to be less than $1.5 times 10^{-5}$, which satisfies the requirement of the KOTO experiment determined from simulation studies.
ePix10K is a hybrid pixel detector developed at SLAC for demanding free-electron laser (FEL) applications, providing an ultrahigh dynamic range (245 eV to 88 MeV) through gain auto-ranging. It has three gain modes (high, medium and low) and two auto- ranging modes (high-to-low and medium-to-low). The first ePix10K cameras are built around modules consisting of a sensor flip-chip bonded to 4 ASICs, resulting in 352x384 pixels of 100 $mu$m x 100 $mu$m each. We present results from extensive testing of three ePix10K cameras with FEL beams at LCLS, resulting in a measured noise floor of 245 eV rms, or 67 e$^-$ equivalent noise charge (ENC), and a range of 11000 photons at 8 keV. We demonstrate the linearity of the response in various gain combinations: fixed high, fixed medium, fixed low, auto-ranging high to low, and auto-ranging medium-to-low, while maintaining a low noise (well within the counting statistics), a very low cross-talk, perfect saturation response at fluxes up to 900 times the maximum range, and acquisition rates of up to 480 Hz. Finally, we present examples of high dynamic range x-ray imaging spanning more than 4 orders of magnitude dynamic range (from a single photon to 11000 photons/pixel/pulse at 8 keV). Achieving this high performance with only one auto-ranging switch leads to relatively simple calibration and reconstruction procedures. The low noise levels allow usage with long integration times at non-FEL sources. ePix10K cameras leverage the advantages of hybrid pixel detectors with high production yield and good availability, minimize development complexity through sharing the hardware, software and DAQ development with all oth
The innermost part of the ATLAS experiment will be a pixel detector containing around 1750 individual detector modules. A detector control system (DCS) is required to handle thousands of I/O channels with varying characteristics. The main building bl ocks of the pixel DCS are the cooling system, the power supplies and the thermal interlock system, responsible for the ultimate safety of the pixel sensors. The ATLAS Embedded Local Monitor Board (ELMB), a multi purpose front end I/O system with a CAN interface, is foreseen for several monitoring and control tasks. The Supervisory, Control And Data Acquisition (SCADA) system will use PVSS, a commercial software product chosen for the CERN LHC experiments. We report on the status of the different building blocks of the ATLAS pixel DCS.
A pixel detector with high spatial resolution and temporal information for ultra-cold neutrons is developed based on a commercial CCD on which a neutron converter is attached. 10B and 6Li are tested for the neutron converter and 10B is found to be mo re suitable based on efficiency and spatial resolution. The pixel detector has an efficiency of 44.1 +- 1.1% and a spatial resolution of 2.9 +- 0.1 um (1 sigma).
This paper presents the design of a new monolithic Silicon-On-Insulator pixel sensor in $200~nm$ SOI CMOS technology. The main application of the proposed pixel detector is the spectroscopy, but it can also be used for the minimum ionizing particle ( MIP) tracking in particle physics experiments. For this reason few differe
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا