A pixel detector with high spatial resolution and temporal information for ultra-cold neutrons is developed based on a commercial CCD on which a neutron converter is attached. 10B and 6Li are tested for the neutron converter and 10B is found to be more suitable based on efficiency and spatial resolution. The pixel detector has an efficiency of 44.1 +- 1.1% and a spatial resolution of 2.9 +- 0.1 um (1 sigma).
The innermost part of the ATLAS experiment will be a pixel detector containing around 1750 individual detector modules. A detector control system (DCS) is required to handle thousands of I/O channels with varying characteristics. The main building bl
ocks of the pixel DCS are the cooling system, the power supplies and the thermal interlock system, responsible for the ultimate safety of the pixel sensors. The ATLAS Embedded Local Monitor Board (ELMB), a multi purpose front end I/O system with a CAN interface, is foreseen for several monitoring and control tasks. The Supervisory, Control And Data Acquisition (SCADA) system will use PVSS, a commercial software product chosen for the CERN LHC experiments. We report on the status of the different building blocks of the ATLAS pixel DCS.
This paper presents the design of a new monolithic Silicon-On-Insulator pixel sensor in $200~nm$ SOI CMOS technology. The main application of the proposed pixel detector is the spectroscopy, but it can also be used for the minimum ionizing particle (
MIP) tracking in particle physics experiments. For this reason few differe
This work presents selected results from the first round of the DFG Priority Programme SPP 1491 precision experiments in particle and astroparticle physics with cold and ultra-cold neutrons.
We developed an optical device for ultra-cold neutrons and investigated the influence of a tilt of its guiding components. A measurement of the time-of-flight of the neutrons through the device by means of a dedicated chopper system was performed and
a light-optical method for the alignment of the guiding components is demonstrated. A comparative analysis of former experiments with our results shows the potential of such a device to test the electrical neutrality of the free neutron on the $10^{-22} q_{rm e}$ level and to investigate the interaction of neutrons with gravity.
The development of ultra-light pixelated ladders is motivated by the requirements of the ILD vertex detector at ILC. This paper summarizes three projects related to system integration. The PLUME project tackles the issue of assembling double-sided la
dders. The SERWIETE project deals with a more innovative concept and consists in making single-sided unsupported ladders embedded in an extra thin plastic enveloppe. AIDA, the last project, aims at building a framework reproducing the experimental running conditions where sets of ladders could be tested.