ﻻ يوجد ملخص باللغة العربية
Studies of the radiation hardness of lead tungstate crystals produced by the Bogoroditsk Techno-Chemical Plant in Russia and the Shanghai Institute of Ceramics in China have been carried out at IHEP, Protvino. The crystals were irradiated by a 40-GeV pion beam. After full recovery, the same crystals were irradiated using a $^{137}Cs$ $gamma$-ray source. The dose rate profiles along the crystal length were observed to be quite similar. We compare the effects of the two types of radiation on the crystals light output.
A Lead Tungstate crystal produced for the electromagnetic calorimeter of the CMS experiment at the LHC was cut into three equal-length sections. The central one was irradiated with 290 MeV/c positive pions up to a fluence of (5.67 +- 0.46)x10^13 /cm^
Radiation damage in lead tungstate crystals reduces their transparency. The calibration that relates the amount of light detected in such crystals to incident energy of photons or electrons is of paramount importance to maintaining the energy resolut
A Cerium Fluoride crystal produced during early R&D studies for calorimetry at the CERN Large Hadron Collider was exposed to a 24 GeV/c proton fluence Phi_p=(2.78 +- 0.20) x 10EE13 cm-2 and, after one year of measurements tracking its recovery, to a
We employed two independent methods to study possible damage to the scintillation mechanism in lead tungstate crystals due to irradiation by a 34 GeV pion beam. First, 10 crystals were irradiated simultaneously over 30 hours by a narrow beam, so that
The electromagnetic calorimeter of PANDA at the FAIR facility will rely on an operation of lead tungstate (PWO) scintillation crystals at temperatures near -25 deg.C to provide sufficient resolution for photons in the energy range from 8 GeV down to