ترغب بنشر مسار تعليمي؟ اضغط هنا

Correlation of Beam Electron and LED Signal Losses under Irradiation and Long-term Recovery of Lead Tungstate Crystals

385   0   0.0 ( 0 )
 نشر من قبل Andrey Ryazantsev
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Radiation damage in lead tungstate crystals reduces their transparency. The calibration that relates the amount of light detected in such crystals to incident energy of photons or electrons is of paramount importance to maintaining the energy resolution the detection system. We report on tests of lead tungstate crystals, read out by photomultiplier tubes, exposed to irradiation by monoenergetic electron or pion beams. The beam electrons themselves were used to measure the scintillation light output, and a blue light emitting diode (LED) was used to track variations of crystals transparency. We report on the correlation of the LED measurement with radiation damage by the beams and also show that it can accurately monitor the crystals recovery from such damage.



قيم البحث

اقرأ أيضاً

69 - V.Batarin , J.Butler , T.Chen 2003
Studies of the radiation hardness of lead tungstate crystals produced by the Bogoroditsk Techno-Chemical Plant in Russia and the Shanghai Institute of Ceramics in China have been carried out at IHEP, Protvino. The crystals were irradiated by a 40-GeV pion beam. After full recovery, the same crystals were irradiated using a $^{137}Cs$ $gamma$-ray source. The dose rate profiles along the crystal length were observed to be quite similar. We compare the effects of the two types of radiation on the crystals light output.
124 - V.Batarin , J.Butler , A.Davidenko 2003
We report on the performance of a monitoring system for a prototype calorimeter for the BTeV experiment that uses Lead Tungstate crystals coupled with photomultiplier tubes. The tests were carried out at the 70 GeV accelerator complex at Protvino, Russia.
A highly stable monitoring system based on blue and red light emitting diodes coupled to a distribution network comprised of optical fibers has been developed for an electromagnetic calorimeter that uses lead tungstate crystals readout with photomult iplier tubes. We report of the system prototype design and on the results of laboratory tests. Stability better than 0.1% (r.m.s.) has been achieved during one week of prototype operation.
174 - M. Follin , V. Sharyy , J-P. Bard 2021
In the context of the ClearMind project, we measured the scintillating properties, as induced from from gamma ray interactions, of today available PbWO4 crystal. We measured scintillation s yields and time constants by measuring the signal shape meas ured on a fast photo-multiplier and deconvoluting it from the instrumental effects. For the doped crystals at room temperature, we measured a fast scintillation component, with time constants of 2 ns, 55 percent of the total light yield, and a slow component of 6 ns. We observe a significant increase of the light yield for the slow component when the temperature decreases and simultaneous increase of the time constants, but no increase in the fast component light yield. Our measurements reproduce the main qualitative features of PbWO4 crystals quoted in the literature. Quantitatively though, we measured significantly shorter time constants and larger light yields. This is explained by a rigorous treatment of the instrumental contributions in the measurements. Results are discussed and prospect for future developments, tailored for the ClearMind project, are presented.
The electromagnetic calorimeter of PANDA at the FAIR facility will rely on an operation of lead tungstate (PWO) scintillation crystals at temperatures near -25 deg.C to provide sufficient resolution for photons in the energy range from 8 GeV down to 10 MeV. Radiation hardness of PWO crystals was studied at the IHEP (Protvino) irradiation facility in the temperature range from room temperature down to -25 deg.C. These studies have indicated a significantly different behaviour in the time evolution of the damaging processes well below room temperature. Different signal loss levels at the same dose rate, but at different temperatures were observed. The effect of a deep suppression of the crystal recovery process at temperatures below 0 deg.C has been seen.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا