ترغب بنشر مسار تعليمي؟ اضغط هنا

Spontaneously generated X-shaped light bullets

54   0   0.0 ( 0 )
 نشر من قبل Paolo Di Trapani
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We observe the formation of an intense optical wavepacket fully localized in all dimensions, i.e. both longitudinally (in time) and in the transverse plane, with an extension of a few tens of fsec and microns, respectively. Our measurements show that the self-trapped wave is a X-shaped light bullet spontaneously generated from a standard laser wavepacket via the nonlinear material response (i.e., second-harmonic generation), which extend the soliton concept to a new realm, where the main hump coexists with conical tails which reflect the symmetry of linear dispersion relationship.

قيم البحث

اقرأ أيضاً

We report measurements that show extreme events in the statistics of resonant radiation emitted from spatiotemporal light bullets. We trace the origin of these extreme events back to instabilities leading to steep gradients in the temporal profile of the intense light bullet that occur during the initial collapse dynamics. Numerical simulations reproduce the extreme valued statistics of the resonant radiation which are found to be intrinsically linked to the simultaneous occurrence of both temporal and spatial self-focusing dynamics. Small fluctuations in both the input energy and in the spatial phase curvature explain the observed extreme behaviour.
93 - S.V. Chekalin 2015
Experimental and numerical studies of a temporal evolution of a light bullet formed in isotropic LiF by Mid IR femtosecond pulse (2500 to 3250 nm) of power, slightly exceeding the critical power for self-focusing, are presented. For the first time re gular oscillations of the light bullet intensity during its propagation in a filament were registered by investigation of induced color centers in LiF. It was revealed that color centers in a single laser pulse filament have a strictly periodic structure with a length of separate sections about 30 mcm, which increases with a laser pulse wavelength decreasing. It was shown that the origin of light bullet modulation is a periodical change of the light field amplitude of an extremely compressed single cycle wave packet in a filament, due to the difference of the wave packet group velocity and the carrier wave phase velocity.
205 - Chao Hang , Guoxiang Huang 2014
We investigate the possibility of guiding stable ultraslow weak-light bullets by using Airy beams in a cold, lifetime-broadened four-level atomic system via electromagnetically induced transparency (EIT). We show that under EIT condition the light bu llet with ultraslow propagating velocity and extremely low generation power formed by the balance between diffraction and nonlinearity in the probe field can be not only stabilized but also steered by the assisted field. In particular, when the assisted field is taken to be an Airy beam, the light bullet can be trapped into the main lobe of the Airy beam, propagate ultraslowly in longitudinal direction, accelerate in transverse directions, and move along a parabolic trajectory. We further show that the light bullet can bypass an obstacle when guided by two sequential Airy beams. A technique for generating ultraslow helical weak-light bullets is also proposed.
Electrically charged particles, moving faster than the speed of light in a medium, emit Cherenkov radiation. Theory predicts electric and magnetic dipoles to radiate as well, with a puzzling behavior for magnetic dipoles pointing in transversal direc tion [I. M. Frank, Izv. Akad. Nauk SSSR, Ser. Fiz. 6, 3 (1942)]. A discontinuous Cherenkov spectrum should appear at threshold, where the particle velocity matches the phase velocity of light. Here we deduce theoretically that light bullets [Y. Silberberg, Opt. Lett. 15, 1282 (1990)] emit an analogous radiation with exactly the same spectral discontinuity for point-like sources. For extended sources the discontinuity turns into a spectral peak at threshold. We argue that this Cherenkov radiation has been experimentally observed in the first attempt to measure Hawking radiation in optics [F. Belgiorno et al., Phys. Rev. Lett. 105, 203901 (2010)] thus giving experimental evidence for a puzzle in Cherenkov radiation instead.
A robust light storage and retrieval (LSR) in high dimensions is highly desirable for light and quantum information processing. However, most schemes on LSR realized up to now encounter problems due to not only dissipation, but also dispersion and di ffraction, which make LSR with a very low fidelity. Here we propose a scheme to achieve a robust storage and retrieval of weak nonlinear high-dimensional light pulses in a coherent atomic gas via electromagnetically induced transparency. We show that it is available to produce stable (3+1)-dimensional light bullets and vortices, which have very attractive physical property and are suitable to obtain a robust LSR in high dimensions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا