ترغب بنشر مسار تعليمي؟ اضغط هنا

Extreme Events in Resonant Radiation from Three-dimensional Light Bullets

401   0   0.0 ( 0 )
 نشر من قبل Thomas Roger
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report measurements that show extreme events in the statistics of resonant radiation emitted from spatiotemporal light bullets. We trace the origin of these extreme events back to instabilities leading to steep gradients in the temporal profile of the intense light bullet that occur during the initial collapse dynamics. Numerical simulations reproduce the extreme valued statistics of the resonant radiation which are found to be intrinsically linked to the simultaneous occurrence of both temporal and spatial self-focusing dynamics. Small fluctuations in both the input energy and in the spatial phase curvature explain the observed extreme behaviour.



قيم البحث

اقرأ أيضاً

Electrically charged particles, moving faster than the speed of light in a medium, emit Cherenkov radiation. Theory predicts electric and magnetic dipoles to radiate as well, with a puzzling behavior for magnetic dipoles pointing in transversal direc tion [I. M. Frank, Izv. Akad. Nauk SSSR, Ser. Fiz. 6, 3 (1942)]. A discontinuous Cherenkov spectrum should appear at threshold, where the particle velocity matches the phase velocity of light. Here we deduce theoretically that light bullets [Y. Silberberg, Opt. Lett. 15, 1282 (1990)] emit an analogous radiation with exactly the same spectral discontinuity for point-like sources. For extended sources the discontinuity turns into a spectral peak at threshold. We argue that this Cherenkov radiation has been experimentally observed in the first attempt to measure Hawking radiation in optics [F. Belgiorno et al., Phys. Rev. Lett. 105, 203901 (2010)] thus giving experimental evidence for a puzzle in Cherenkov radiation instead.
A rigorous method of calculating the electromagnetic field, the scattering matrix, and scattering cross-sections of an arbitrary finite three-dimensional optical system described by its permittivity distribution is presented. The method is based on t he expansion of the Greens function into the resonant states of the system. These can be calculated by any means, including the popular finite element and finite-difference time-domain methods. However, using the resonant-state expansion with a spherically-symmetric analytical basis, such as that of a homogeneous sphere, allows to determine a complete set of the resonant states of the system within a given frequency range. Furthermore, it enables to take full advantage of the expansion of the field outside the system into vector spherical harmonics, resulting in simple analytic expressions. We verify and illustrate the developed approach on an example of a dielectric sphere in vacuum, which has an exact analytic solution known as Mie scattering.
We observe the formation of an intense optical wavepacket fully localized in all dimensions, i.e. both longitudinally (in time) and in the transverse plane, with an extension of a few tens of fsec and microns, respectively. Our measurements show that the self-trapped wave is a X-shaped light bullet spontaneously generated from a standard laser wavepacket via the nonlinear material response (i.e., second-harmonic generation), which extend the soliton concept to a new realm, where the main hump coexists with conical tails which reflect the symmetry of linear dispersion relationship.
61 - B. Zhou , X. Liu , H.R. Guo 2016
We show that a temporal soliton can induce resonant radiation by three-wave mixing nonlinearities. This constitutes a new class of resonant radiation whose spectral positions are parametrically tunable. The experimental verification is done in a peri odically poled lithium niobate crystal, where a femtosecond near-IR soliton is excited and resonant radiation waves are observed exactly at the calculated soliton phase-matching wavelengths via the sum- and difference-frequency generation nonlinearities. This extends the supercontinuum bandwidth well into the mid-IR to span 550-5000 nm and the mid-IR edge is parametrically tunable over 1000 nm by changing the three-wave mixing phase-matching condition. The results are important for bright and broadband supercontinuum generation and for frequency comb generation in quadratic nonlinear microresonators.
A robust light storage and retrieval (LSR) in high dimensions is highly desirable for light and quantum information processing. However, most schemes on LSR realized up to now encounter problems due to not only dissipation, but also dispersion and di ffraction, which make LSR with a very low fidelity. Here we propose a scheme to achieve a robust storage and retrieval of weak nonlinear high-dimensional light pulses in a coherent atomic gas via electromagnetically induced transparency. We show that it is available to produce stable (3+1)-dimensional light bullets and vortices, which have very attractive physical property and are suitable to obtain a robust LSR in high dimensions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا