ترغب بنشر مسار تعليمي؟ اضغط هنا

Rectangular Waveguide HOM Couplers for a TESLA Superstructure

66   0   0.0 ( 0 )
 نشر من قبل Michael Lalayan
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. Blednykh




اسأل ChatGPT حول البحث

Some modifications of a Rectangular Waveguide HOM couplers for TESLA superstructure have been investigated. These RWG HOM couplers are to be installed between the cavities of the superstructure and also at the both ends of it. We investigated a RWG HOM coupler attached to the beam pipe through the slots orientated along beam pipe axis (longitudinal slots), perpendicular to it (azimutal slots) and at some angle to this axis. For dipole modes of both polarizations damping two RWG in every design were used. This paper presents the results obtained for scaled-up setup at 3 GHz at room temperature. The advantages of HOM coupler with longitudinal slots for damping dipole modes and compact HOM coupler with slots at some angle to the axis are shown. Arrangement of HOM coupler in cryostat and heating due to HOM and FM losses are presented. Calculations and design of the feeding RWG coupler for superstructure are also presented.



قيم البحث

اقرأ أيضاً

We describe the upgrades to diagnostic capabilities on the Fermilab Accelerator Science and Technology (FAST) electron linear accelerator that will allow investigations of the effects of high-order modes (HOMs) in SCRF cavities on macropulse-average beam quality. We examine the dipole modes in the first pass-band generally observed in the 1.6-1.9 GHz regime for TESLA-type SCRF cavities due to uniform transverse beam offsets of the electron beam. Such cavities are the basis of the accelerators such as the European XFEL and the proposed MaRIE XFEL facility. Preliminary HOM detector data, prototype BPM test data, and first framing camera OTR data with ~20 micron spatial resolution at 250 pC per bunch will be presented.
A 1.8 T dipole magnet using thin grain oriented silicon steel laminations has been constructed as a prototype for a muon synchrotron ramping at 400 Hz. Following the practice in large 3 phase transformers and our own Opera-2d simulations, joints are mitred to take advantage of the magnetic properties of the steel which are much better in the direction in which the steel was rolled. Measurements with a Hysteresigraph 5500 and Epstein frame show a high magnetic permeability which minimizes stored energy in the yoke allowing the magnet to ramp quickly with modest voltage. Coercivity is low which minimizes hysteresis losses. A power supply with a fast Insulated Gate Bipolar Transistor (IGBT) switch and a capacitor was constructed. Coils are wound with 12 gauge copper wire. Thin wire and laminations minimize eddy current losses. The magnetic field was measured with a peak sensing Hall probe.
Quantum mechanical treatment of light inside dielectric media is important to understand the behavior of an optical system. In this paper, a two-level atom embedded in a rectangular waveguide surrounded by a perfect electric conductor is considered. Spontaneous emission, propagation, and detection of a photon are described by the second quantization formalism. The quantized modes for light are divided into two types: photonic propagating modes and localized modes with exponential decay along the direction of waveguide. Though spontaneous emission depends on all possible modes including the localized modes, detection far from the source only depends on the propagating modes. This discrepancy of dynamical behaviors gives two different decay rates along space and time in the correlation function of the photon detection.
124 - Jing Zeng , Jing Lu , Lan Zhou 2018
We study the spontaneous emission (SE) of an excited two-level nonrelativistic system (TLS) interacting with the vacuum in a waveguide of rectangular cross section. All TLSs transitions and the center-of-mass motion of the TLS are taken into account. The SE rate and the carried frequency of the emitted photon for the TLS initial being at rest is obtained, it is found in the first order of the center of mass (c.m.) that the frequency of the emitted photon could be smaller or larger than the transition frequency of the TLS but the SE rate is smaller than the SE rate $Gamma_{f}$ of the TLS fixed in the same waveguide. The SE rate and the carried frequency of the emitted photon for the TLS initial being moving is also obtained in the first order of the c.m.. The SE rate is larger than $Gamma_{f}$ but it is independent of the initial momentum. The carried frequency of the emitted photon is creased when it travels along the direction of the initial momentum and is decreased when it travels in the opposite direction of the initial momentum.
112 - Hongying Liu , L. F. Wei 2019
Due to the limitations either on the sizes of devices and signal routing channels, the current planar integrated optical waveguide circuits await for the further developments into the three-dimensional (3D) integrations, although their designs and fa brications are still challenges. In this paper we demonstrate an analytical method, basing on the invariant engineering, to overcome the complication in the usual method by numerically solving the relevant 3D coupled-mode equations for designing various 3D optical waveguide devices such as the typical couplers. Our method is based on the quantum-optical analogy, i.e., the Maxwell equation for the electrcomagnetic wave prorogating along the waveguide structure in the spatial domain is formally similar to the Schrodinger equation for the evolving quantum state in the time domain. We find that the spatial-domain invariants can be effectively constructed to solve the 3D coupled-mode equations, analogously to solve the dynamical evolutions of quantum systems in the time-domain. As a consequence, as long as appropriately set the coupling parameters between the 3D interconnected waveguides, the 3D three-waveguide couplers could be designed for various desirably power divisions. As the invariant method is a natural shortcut to the adiabaticity, the compacted devices designed by the invariant-based engineerings are robust against the coupling coefficient variations and the coupler lengths.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا