ترغب بنشر مسار تعليمي؟ اضغط هنا

Spontaneous emission of a moving atom in a waveguide of rectangular cross section

125   0   0.0 ( 0 )
 نشر من قبل Jing Zeng
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the spontaneous emission (SE) of an excited two-level nonrelativistic system (TLS) interacting with the vacuum in a waveguide of rectangular cross section. All TLSs transitions and the center-of-mass motion of the TLS are taken into account. The SE rate and the carried frequency of the emitted photon for the TLS initial being at rest is obtained, it is found in the first order of the center of mass (c.m.) that the frequency of the emitted photon could be smaller or larger than the transition frequency of the TLS but the SE rate is smaller than the SE rate $Gamma_{f}$ of the TLS fixed in the same waveguide. The SE rate and the carried frequency of the emitted photon for the TLS initial being moving is also obtained in the first order of the c.m.. The SE rate is larger than $Gamma_{f}$ but it is independent of the initial momentum. The carried frequency of the emitted photon is creased when it travels along the direction of the initial momentum and is decreased when it travels in the opposite direction of the initial momentum.



قيم البحث

اقرأ أيضاً

Quantum mechanical treatment of light inside dielectric media is important to understand the behavior of an optical system. In this paper, a two-level atom embedded in a rectangular waveguide surrounded by a perfect electric conductor is considered. Spontaneous emission, propagation, and detection of a photon are described by the second quantization formalism. The quantized modes for light are divided into two types: photonic propagating modes and localized modes with exponential decay along the direction of waveguide. Though spontaneous emission depends on all possible modes including the localized modes, detection far from the source only depends on the propagating modes. This discrepancy of dynamical behaviors gives two different decay rates along space and time in the correlation function of the photon detection.
The quantum coupling of individual superconducting qubits to microwave photons leads to remarkable experimental opportunities. Here we consider the phononic case where the qubit is coupled to an electromagnetic surface acoustic wave antenna that enab les supersonic propagation of the qubit oscillations. This can be considered as a giant atom that is many phonon wavelengths long. We study an exactly solvable toy model that captures these effects, and find that this non-Markovian giant atom has a suppressed relaxation, as well as an effective vacuum coupling between a qubit excitation and a localized wave packet of sound, even in the absence of a cavity for the sound waves. Finally, we consider practical implementations of these ideas in current surface acoustic wave devices.
In this paper, we investigate the geometric phase of the field interacting with $Xi $-type moving three-level atom. The results show that the atomic motion and the field-mode structure play important roles in the evolution of the system dynamics and geometric phase. We test this observation with experimentally accessible parameters and some new aspects are obtained.
Tailoring the interactions between quantum emitters and single photons constitutes one of the cornerstones of quantum optics. Coupling a quantum emitter to the band edge of a photonic crystal waveguide (PCW) provides a unique platform for tuning thes e interactions. In particular, the crossover from propagating fields $E(x) propto e^{pm ik_x x}$ outside the bandgap to localized fields $E(x) propto e^{-kappa_x |x|}$ within the bandgap should be accompanied by a transition from largely dissipative atom-atom interactions to a regime where dispersive atom-atom interactions are dominant. Here, we experimentally observe this transition for the first time by shifting the band edge frequency of the PCW relative to the $rm D_1$ line of atomic cesium for $bar{N}=3.0pm 0.5$ atoms trapped along the PCW. Our results are the initial demonstration of this new paradigm for coherent atom-atom interactions with low dissipation into the guided mode.
165 - Lijuan Hu , Guiyuan Lu , Jing Lu 2019
We study two two-level systems (TLSs) interacting with a reservoir of guided modes confined in a rectangular waveguide. For the energy separation of the identical TLSs far away from the cutoff frequencies of transverse modes, the delay-differential e quations are obtained with single excitation initial in the TLSs. The effects of the inter-TLS distance on the time evolution of the concurrence of the TLSs are examined.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا