ﻻ يوجد ملخص باللغة العربية
Due to the limitations either on the sizes of devices and signal routing channels, the current planar integrated optical waveguide circuits await for the further developments into the three-dimensional (3D) integrations, although their designs and fabrications are still challenges. In this paper we demonstrate an analytical method, basing on the invariant engineering, to overcome the complication in the usual method by numerically solving the relevant 3D coupled-mode equations for designing various 3D optical waveguide devices such as the typical couplers. Our method is based on the quantum-optical analogy, i.e., the Maxwell equation for the electrcomagnetic wave prorogating along the waveguide structure in the spatial domain is formally similar to the Schrodinger equation for the evolving quantum state in the time domain. We find that the spatial-domain invariants can be effectively constructed to solve the 3D coupled-mode equations, analogously to solve the dynamical evolutions of quantum systems in the time-domain. As a consequence, as long as appropriately set the coupling parameters between the 3D interconnected waveguides, the 3D three-waveguide couplers could be designed for various desirably power divisions. As the invariant method is a natural shortcut to the adiabaticity, the compacted devices designed by the invariant-based engineerings are robust against the coupling coefficient variations and the coupler lengths.
Modern integrated circuits are essentially two-dimensional (2D). Partial three-dimensional (3D) integration and 3D-transistor-level integrated circuits have long been anticipated as routes to improve the performance, cost and size of electronic compu
We demonstrate the quantized transfer of photon energy and transverse momentum to a high-coherence electron beam. In an ultrafast transmission electron microscope, a three-dimensional phase modulation of the electron wavefunction is induced by transm
We reveal a generic connection between the effect of time-reversals and nonlinear wave dynamics in systems with parity-time (PT) symmetry, considering a symmetric optical coupler with balanced gain and loss where these effects can be readily observed
Single-crystal carbon nanomaterials have led to great advances in nanotechnology. The first single-crystal carbon nanomaterial, fullerene, was fabricated in a zero-dimensional form. One-dimensional carbon nanotubes and two-dimensional graphene have s
Some modifications of a Rectangular Waveguide HOM couplers for TESLA superstructure have been investigated. These RWG HOM couplers are to be installed between the cavities of the superstructure and also at the both ends of it. We investigated a RWG H