ﻻ يوجد ملخص باللغة العربية
Can a simple microscopic model of space and time demonstrate Special Relativity as the macroscopic (aggregate) behavior of an ensemble ? The question will be investigated in three parts. First, it is shown that the Lorentz transformation formally stems from the First Relativity Postulate (FRP) {it alone} if space-time quantization is a fundamental law of physics which must be included as part of the Postulate. An important corollary, however, is that when measuring devices which carry the basic units of lengths and time (e.g. a clock ticking every time quantum) are `moving uniformly, they appear to be measuring with larger units. Secondly, such an apparent increase in the sizes of the quanta can be attributed to extra fluctuations associated with motion, which are precisely described in terms of a thermally agitated harmonic oscillator by using a temperature parameter. This provides a stringent constraint on the microscopic properties of flat space-time: it is an array of quantized oscillators. Thirdly, since the foregoing development would suggest that the space-time array of an accelerated frame cannot be in thermal equilibrium, (i.e. it will have a distribution of temperatures), the approach is applied to the case of acceleration by the field of {it any} point object, which corresponds to a temperature `spike in the array. It is shown that the outward transport of energy by phonon conduction implies an inverse-square law of force at low speeds, and the full Schwarzschild metric at high speeds. A prediction of the new theory is that when two inertial observers move too fast relative to each other, or when fields are too strong, anharmonic corrections will modify effects like time dilation, and will lead to asymmetries which implies that the FRP may not be sustainable in this extreme limit.
We examine two far-reaching and somewhat heretic consequences of General Relativity. (i) It requires a cosmology which includes a preferred rest frame, absolute space and time. (ii) A rotating universe and time travel are strict solutions of General Relativity.
Extending black-hole entropy to ordinary objects, we propose kinetic entropy tensor, based on which a quantum gravity tensor equation is established. Our investigation results indicate that if N=1, the quantum gravity tensor equation returns to Schro
Applying the resolution-scale relativity principle to develop a mechanics of non-differentiable dynamical paths, we find that, in one dimension, stationary motion corresponds to an Ito process driven by the solutions of a Riccati equation. We verify
It is demonstrated how quantum mechanics is generated by stochastic momentum kicks from the force carriers, transmitting the fundamental interactions between the point particles. The picture is consistent with quantum field theory and points out that
Statistical physics cannot explain why a thermodynamic arrow of time exists, unless one postulates very special and unnatural initial conditions. Yet, we argue that statistical physics can explain why the thermodynamic arrow of time is universal, i.e