ﻻ يوجد ملخص باللغة العربية
Applying the resolution-scale relativity principle to develop a mechanics of non-differentiable dynamical paths, we find that, in one dimension, stationary motion corresponds to an Ito process driven by the solutions of a Riccati equation. We verify that the corresponding Fokker-Planck equation is solved for a probability density corresponding to the squared modulus of the solution of the Schrodinger equation for the same problem. Inspired by the treatment of the one-dimensional case, we identify a generalization to time dependent problems in any number of dimensions. The Ito process is then driven by a function which is identified as establishing the link between non-differentiable dynamics and standard quantum mechanics. This is the basis for the scale relativistic interpretation of standard quantum mechanics and, in the case of applications to chaotic systems, it leads us to identify quantum-like states as characterizing the entire system rather than the motion of its individual constituents.
This article motivates and presents the scale relativistic approach to non-differentiability in mechanics and its relation to quantum mechanics. It stems from the scale relativity proposal to extend the principle of relativity to resolution-scale tra
This article is the second in a series of two presenting the Scale Relativistic approach to non-differentiability in mechanics and its relation to quantum mechanics. Here, we show Schroedingers equation to be a reformulation of Newtons fundamental re
When compared to quantum mechanics, classical mechanics is often depicted in a specific metaphysical flavour: spatio-temporal realism or a Newtonian background is presented as an intrinsic fundamental classical presumption. However, the Hamiltonian f
Can a simple microscopic model of space and time demonstrate Special Relativity as the macroscopic (aggregate) behavior of an ensemble ? The question will be investigated in three parts. First, it is shown that the Lorentz transformation formally ste
Since the very early days of quantum theory there have been numerous attempts to interpret quantum mechanics as a statistical theory. This is equivalent to describing quantum states and ensembles together with their dynamics entirely in terms of phas