ترغب بنشر مسار تعليمي؟ اضغط هنا

Microscopic Determinations of Fission Barriers, (MEAN-Field and Beyond)

92   0   0.0 ( 0 )
 نشر من قبل Artur Dobrowolski
 تاريخ النشر 2006
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

With a help of the selfconsistent Hartree-Fock-Bogoliubov (HFB) approach with the D1S effective Gogny interaction and the Generator Coordinate Method (GCM) we incorporate the transverse collective vibrations to the one-dimensional model of the fission-barrier penetrability based on the traditional WKB method. The average fission barrier corresponding to the least-energy path in the two-dimensional potential energy landscape as function of quadrupole and octupole degrees of freedom is modified by the influence of the transverse collective vibrations along the nuclear path to fission. The set of transverse vibrational states built in the fission valley corresponding to a successively increasing nuclear elongation produces the new energy barrier which is compared with the least-energy barrier. These collective states are given as the eigensolutions of the GCM purely vibrational Hamiltonian. In addition, the influence of the collective inertia on the fission properties is displayed, and it turns out to be the decisive condition for the possible transitions between different fission valleys.

قيم البحث

اقرأ أيضاً

The impact of beyond mean field effects on the ground state and fission properties of superheavy nuclei has been investigated in a five-dimensional collective Hamiltonian based on covariant density functional theory. The inclusion of dynamical correl ations reduces the impact of the $Z=120$ shell closure and induces substantial collectivity for the majority of the $Z=120$ nuclei which otherwise are spherical at the mean field level (as seen in the calculations with the PC-PK1 functional). Thus, they lead to a substantial convergence of the predictions of the functionals DD-PC1 and PC-PK1 which are different at the mean field level. On the contrary, the predictions of these two functionals remain distinctly different for the $N=184$ nuclei even when dynamical correlations are included. These nuclei are mostly spherical (oblate) in the calculations with PC-PK1 (DD-PC1). Our calculations for the first time reveal significant impact of dynamical correlations on the heights of inner fission barriers of superheavy nuclei with soft potential energy surfaces, the minimum of which at the mean field level is located at spherical shape. These correlations affect the fission barriers of the nuclei, which are deformed in the ground state at the mean field level, to a lesser degree.
Given a set of collective variables, a method is proposed to obtain the associated conjugated collective momenta and masses starting from a microscopic time-dependent mean-field theory. The construction of pairs of conjugated variables is the first s tep to bridge microscopic and macroscopic approaches. The method is versatile and can be applied to study a large class of nuclear processes. An illustration is given here with the fission of $^{258}$Fm. Using the quadrupole moment and eventually higher-order multipole moments, the associated collective masses are estimated along the microscopic mean-field evolution. When more than one collective variable are considered, it is shown that the off-diagonal matrix elements of the inertia play a crucial role. Using the information on the quadrupole moment and associated momentum, the collective evolution is studied. It is shown that dynamical effects beyond the adiabatic limit are important. Nuclei formed after fission tend to stick together for longer time leading to a dynamical scission point at larger distance between nuclei compared to the one anticipated from the adiabatic energy landscape. The effective nucleus-nucleus potential felt by the emitted nuclei is finally extracted.
118 - A. Dobrowolski , K. Pomorski , 2003
Fusion barriers are determined in the framework of the Skyrme energy-density functional together with the semi-classical approach known as the Extended Thomas-Fermi method. The barriers obtained in this way with the Skyrme interaction SkM* turn out t o be close to those generated by phenomenological models like those using the proximity potentials. It is also shown that the location and the structure of the fusion barrier in the vicinity of its maximum and beyond can be quite accurately described by a simple analytical form depending only on the masses and the relative isospin of target and projectile nucleus.
We describe the fission dynamics of $^{240}$Pu within an implementation of the Density Functional Theory (DFT) extended to superfluid systems and real-time dynamics. We demonstrate the critical role played by the pairing correlations, which even thou gh are not the driving force in this complex dynamics, are providing the essential lubricant, without which the nuclear shape evolution would come to a screeching halt. The evolution is found to be much slower than previously expected in this fully non-adiabatic treatment of nuclear dynamics, where there are no symmetry restrictions and all collective degrees of freedom (CDOF) are allowed to participate in the dynamics.
Using the microscopic-macroscopic model based on the deformed Woods-Saxon single-particle potential and the Yukawa-plus-exponential macroscopic energy we calculated static fission barriers $B_{f}$ for 1305 heavy and superheavy nuclei $98leq Z leq 126 $, including even - even, odd - even, even - odd and odd - odd systems. For odd and odd-odd nuclei, adiabatic potential energy surfaces were calculated by a minimization over configurations with one blocked neutron or/and proton on a level from the 10-th below to the 10-th above the Fermi level. The parameters of the model that have been fixed previously by a fit to masses of even-even heavy nuclei were kept unchanged. A search for saddle points has been performed by the Imaginary Water Flow method on a basic five-dimensional deformation grid, including triaxiality. Two auxiliary grids were used for checking the effects of the mass asymmetry and hexadecapole non-axiallity. The ground states were found by energy minimization over configurations and deformations. We find that the non-axiallity significantly changes first and second fission barrier in many nuclei. The effect of the mass - asymmetry, known to lower the second, very deformed barriers in actinides, in the heaviest nuclei appears at the less deformed saddles in more than 100 nuclei. It happens for those saddles in which the triaxiallity does not play any role, what suggests a decoupling between effects of the mass-asymmetry and triaxiality. We studied also the influence of the pairing interaction strength on the staggering of $B_f$ for odd- and even-particle numbers. Finally, we provide a comparison of our results with other theoretical fission barrier evaluations and with available experimental estimates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا