ﻻ يوجد ملخص باللغة العربية
We describe the fission dynamics of $^{240}$Pu within an implementation of the Density Functional Theory (DFT) extended to superfluid systems and real-time dynamics. We demonstrate the critical role played by the pairing correlations, which even though are not the driving force in this complex dynamics, are providing the essential lubricant, without which the nuclear shape evolution would come to a screeching halt. The evolution is found to be much slower than previously expected in this fully non-adiabatic treatment of nuclear dynamics, where there are no symmetry restrictions and all collective degrees of freedom (CDOF) are allowed to participate in the dynamics.
This article reviews how nuclear fission is described within nuclear density functional theory. In spontaneous fission, half-lives are the main observables and quantum tunnelling the essential concept, while in induced fission the focus is on fragmen
We suggest a small set of fission observables to be used as test cases for validation of theoretical calculations. The purpose is to provide common data to facilitate the comparison of different fission theories and models. The proposed observables a
There has been much recent interest in nuclear fission, due in part to a new appreciation of its relevance to astrophysics, stability of superheavy elements, and fundamental theory of neutrino interactions. At the same time, there have been important
We formulate a microscopic theory of the decay of a compound nucleus through fission which generalizes earlier microscopic approaches of fission dynamics performed in the framework of the adiabatic hypothesis. It is based on the constrained Hartree-F
The fission process is a fascinating phenomenon in which the atomic nucleus, a compact self-bound mesoscopic system, undergoes a spontaneous or induced quantum transition into two or more fragments. A predictive, accurate and precise description of n