ترغب بنشر مسار تعليمي؟ اضغط هنا

Adiabatic fission barriers in superheavy nuclei

76   0   0.0 ( 0 )
 نشر من قبل Michal Kowal
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Using the microscopic-macroscopic model based on the deformed Woods-Saxon single-particle potential and the Yukawa-plus-exponential macroscopic energy we calculated static fission barriers $B_{f}$ for 1305 heavy and superheavy nuclei $98leq Z leq 126$, including even - even, odd - even, even - odd and odd - odd systems. For odd and odd-odd nuclei, adiabatic potential energy surfaces were calculated by a minimization over configurations with one blocked neutron or/and proton on a level from the 10-th below to the 10-th above the Fermi level. The parameters of the model that have been fixed previously by a fit to masses of even-even heavy nuclei were kept unchanged. A search for saddle points has been performed by the Imaginary Water Flow method on a basic five-dimensional deformation grid, including triaxiality. Two auxiliary grids were used for checking the effects of the mass asymmetry and hexadecapole non-axiallity. The ground states were found by energy minimization over configurations and deformations. We find that the non-axiallity significantly changes first and second fission barrier in many nuclei. The effect of the mass - asymmetry, known to lower the second, very deformed barriers in actinides, in the heaviest nuclei appears at the less deformed saddles in more than 100 nuclei. It happens for those saddles in which the triaxiallity does not play any role, what suggests a decoupling between effects of the mass-asymmetry and triaxiality. We studied also the influence of the pairing interaction strength on the staggering of $B_f$ for odd- and even-particle numbers. Finally, we provide a comparison of our results with other theoretical fission barrier evaluations and with available experimental estimates.

قيم البحث

اقرأ أيضاً

The impact of pairing correlations on the fission barriers is investigated in Relativistic Hartree Bogoliubov (RHB) theory and Relativistic Mean Field (RMF)+BCS calculations. It is concluded that the constant gap approximation in the usual RMF+BCS ca lculations does not provide an adequate description of the barriers. The RHB calculations show that there is a substantial difference in the predicted barrier heights between zero-range and finite range pairing forces even in the case when the pairing strengths of these two forces are adjusted to the same value of the pairing gap at the ground state.
103 - A. Mamdouh 2000
Using the ETFSI (extended Thomas-Fermi plus Strutinsky integral) method, we have calculated the fission barriers of nearly 2000 exotic nuclei, including all the neutron-rich nuclei up to A=318 that are expected to be relevant to the r-process, and al l the superheavy nuclei in the vicinity of N=184, with Z<=120. Our calculations were performed with the Skyrme force SkSC4, which was determined in the ETFSI-1 mass fit. For proton-deficient nuclei in the region of N=184 we find the barriers to be much higher than previously believed, which suggests that the r-process path might continue to mass numbers well beyond 300. For the superheavy nuclei we typically find barrier heights of 6-7 MeV.
107 - F. Minato , K. Hagino 2008
We discuss the sensitivity of fission barrier for heavy neutron-rich nuclei to fission paths in the two dimensional neutron-proton quadrupole plane. To this end, we use the constrained Skyrme-Hartree-Fock + BCS method, and examine the difference of f ission barriers obtained with three constraining operators, that is, the neutron, proton, and mass quadrupole operators. We investigate $^{220}$U, $^{236}$U, and $^{266}$U, %from proton-rich to neutron-rich uranium isotopes, that is relevant to r-process nucleosynthesis. We find that the fission barrier heights are almost the same among the three constraining operators even for neutron-rich nuclei, indicating that the usual way to calculate fission barriers with the mass quadrupole operator is well justified. We also discuss the difference between proton and neutron deformation parameters along the fission paths.
116 - O. V. Kiren 2013
Spontaneous fission and alpha decay are the main decay modes for superheavy nuclei. The superheavy nuclei which have small alpha decay half-life compared to spontaneous fission half-life will survive fission and can be detected in the laboratory thro ugh alpha decay. We have studied the alpha decay half-life and spontaneous half-life of some superheavy elements in the atomic range Z = 100-130. Spontaneous fission half-lives of superheavy nuclei have been calculated using the phenomenological formula and the alpha decay half-lives using Viola-Seaborg-Sobiczewski formula (Sobiczewski et al. 1989), semi empirical relation of Brown (1992) and formula based on generalized liquid drop model proposed by Dasgupta-Schubert and Reyes (2007). The results are reported here.
Potential energy surfaces and fission barriers of superheavy nuclei are analyzed in the macroscopic-microscopic model. The Lublin-Strasbourg Drop (LSD) is used to obtain the macroscopic part of the energy, whereas the shell and pairing energy correct ions are evaluated using the Yukawa-folded potential. A standard flooding technique has been used to determine the barrier heights. It was shown the Fourier shape parametrization containing only three deformation parameters reproduces well the nuclear shapes of nuclei on their way to fission. In addition, the non-axial degree of freedom is taken into account to describe better the form of nuclei around the ground state and in the saddles region. Apart from the symmetric fission valley, a new very asymmetric fission mode is predicted in most superheavy nuclei. The fission fragment mass distributions of considered nuclei are obtained by solving the 3D Langevin equations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا