ترغب بنشر مسار تعليمي؟ اضغط هنا

NN final-state interaction in two-nucleon knockout from $^{16}O$

109   0   0.0 ( 0 )
 نشر من قبل Carlotta Giusti
 تاريخ النشر 2003
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The influence of the mutual interaction between the two outgoing nucleons (NN-FSI) in electro- and photoinduced two-nucleon knockout from $^{16}O$ has been investigated perturbatively. It turns out that the effect of NN-FSI depends on the kinematics and on the type of reaction considered. The effect is generally larger in pp- than in pn-knockout and in electron induced than in photoinduced reactions. In superparallel kinematics NN-FSI leads in the $(e,epp)$ channel to a strong increase of the cross section, that is mainly due to a strong enhancement of the $Delta$-current contribution. In pn-emission, however, this effect is partially cancelled by a destructive interference with the seagull current. For photoreactions NN-FSI is considerably reduced in superparallel kinematics and can be practically negligible in specific kinematics.

قيم البحث

اقرأ أيضاً

We present results of an updated calculation of the 2p2h (two particle two hole) contribution to the neutrino-induced charge-current cross section. We provide also some exclusive observables, interesting from the point of view of experimental studies , e.g. distributions of momenta of the outgoing nucleons and of available energy, which we compare with the results obtained within the NEUT generator. We also compute, and separate from the total, the contributions of 3p3h mechanisms. Finally, we discuss the differences between the present results and previous implementations of the model in MC event-generators, done at the level of inclusive cross sections, which might significantly influence the experimental analyses, particularly in the cases where the hadronic observables are considered.
We study the effects of final state interactions in the non-mesonic weak decay $Lambda N rightarrow nN$ (n is a neutron and N is either a neutron or a proton) of the hypernucleus $_Lambda^4$He. Using a three-body model the effects of distortion of th e interaction of the emitted nucleon pair with the residual nucleus is considered. We also study the influence of the final state interaction between the emitted nucleons using the Migdal-Watson model. The effect of spin symmetries in the final state of the pair is also considered. Based on our calculations, we conclude that final state interactions play a minor role in the kinetic energy spectrum of the emitted nucleon pair.
Inclusive quasi-elastic electron scattering off nuclei is investigated at high momentum transfer (Q^2>1 (GeV/c)^2) and x>1 adopting a consistent treatment of nucleon-nucleon correlations in initial and final states. It is shown that in case of light as well as complex nuclei the inclusive cross section at 1.3<x<2 is dominated by the absorption of the virtual photon on a pair of correlated nucleons and by their elastic rescattering in the continuum, whereas at x>2 it is governed by the rescattering of the outgoing off-mass-shell nucleon in the complex optical potential generated by the ground state of the residual (A-1)-nucleon system.
121 - Meijuan Wang , Lianshou Liu , 2008
In order to trace the initial interaction in ultra-relativistic heavy ion collision in all azimuthal directions, two azimuthal multiplicity-correlation patterns -- neighboring and fixed-to-arbitrary angular-bin correlation patterns -- are suggested. From the simulation of Au + Au collisions at 200 GeV by using the Monte Carlo models RQMD with hadron re-scattering and AMPT with and without string melting, we observe that the correlation patterns change gradually from out-of-plane preferential one to in-plane preferential one when the centrality of collision shifts from central to peripheral, meanwhile the anisotropic collective flow v_2 keeps positive in all cases. This regularity is found to be model and collision energy independent. The physics behind the two opposite trends of correlation patterns, in particular, the presence of out-of-plane correlation patterns at RHIC energy, are discussed.
We consider the charged-current quasielastic scattering of muon neutrinos on an Oxygen 16 target, described within a relativistic shell model and, for comparison, the relativistic Fermi gas. Final state interactions are described in the distorted wav e impulse approximation, using both a relativistic mean field potential and a relativistic optical potential, with and without imaginary part. We present results for inclusive cross sections at fixed neutrino energies in the range $E_ u =$ 200 MeV - 1 GeV, showing that final state interaction effects can remain sizable even at large energies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا