ﻻ يوجد ملخص باللغة العربية
In order to trace the initial interaction in ultra-relativistic heavy ion collision in all azimuthal directions, two azimuthal multiplicity-correlation patterns -- neighboring and fixed-to-arbitrary angular-bin correlation patterns -- are suggested. From the simulation of Au + Au collisions at 200 GeV by using the Monte Carlo models RQMD with hadron re-scattering and AMPT with and without string melting, we observe that the correlation patterns change gradually from out-of-plane preferential one to in-plane preferential one when the centrality of collision shifts from central to peripheral, meanwhile the anisotropic collective flow v_2 keeps positive in all cases. This regularity is found to be model and collision energy independent. The physics behind the two opposite trends of correlation patterns, in particular, the presence of out-of-plane correlation patterns at RHIC energy, are discussed.
Investigation of momentum space correlations of particles produced in high energy reactions requires taking final state interactions into account, a crucial point of any such analysis. Coulomb interaction between charged particles is the most importa
We investigate the two-particle intensity correlation function of $Lambda$ in relativistic heavy-ion collisions. We find that the behavior of the $LambdaLambda$ correlation function at small relative momenta is fairly sensitive to the interaction pot
The particle momentum anisotropy ($v_n$) produced in relativistic nuclear collisions is considered to be a response of the initial geometry or the spatial anisotropy $epsilon_n$ of the system formed in these collisions. The linear correlation between
In the present work we propose a new initial state model for hydrodynamic simulation of relativistic heavy ion collisions based on Bjorken-like solution applied streak by streak in the transverse plane. Previous fluid dynamical calculations in Cartes
We study charm production in ultra-relativistic heavy-ion collisions by using the Parton-Hadron-String Dynamics (PHSD) transport approach. The initial charm quarks are produced by the PYTHIA event generator tuned to fit the transverse momentum spectr