ترغب بنشر مسار تعليمي؟ اضغط هنا

Nucleon-Nucleon Correlations and Final State Interaction in Inclusive Quasi-Elastic Electron Scattering off Nuclei at x>1

307   0   0.0 ( 0 )
 نشر من قبل ul
 تاريخ النشر 1994
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Inclusive quasi-elastic electron scattering off nuclei is investigated at high momentum transfer (Q^2>1 (GeV/c)^2) and x>1 adopting a consistent treatment of nucleon-nucleon correlations in initial and final states. It is shown that in case of light as well as complex nuclei the inclusive cross section at 1.3<x<2 is dominated by the absorption of the virtual photon on a pair of correlated nucleons and by their elastic rescattering in the continuum, whereas at x>2 it is governed by the rescattering of the outgoing off-mass-shell nucleon in the complex optical potential generated by the ground state of the residual (A-1)-nucleon system.

قيم البحث

اقرأ أيضاً

We discuss a new approach to final state interactions, that keeps explicitly into account the virtuality of the ejected nucleon in quasi-elastic $A(e,ep)X$ scattering at very large $Q^2$, and we present some recent results, at moderately large $Q^2$ values, for the nuclear transparency in $^4He$, $^{16}O$ and $^{40}Ca$ and for the momentum distributions of $^4He$.
A new linked cluster expansion for the calculation of ground state observables of complex nuclei with realistic interactions has been developed [1-3]; using the V8 potential [4] the ground state energy, density and momentum distribution of complex nu clei have been calculated and found to be in good agreement with the results of [5], obtained within the Fermi Hyper Netted Chain, and Variational Monte Carlo [6] approaches. Using the same cluster expansion, with wave function and correlations Realistic Calculation of the Effects of Nucleon-Nucleon Correlations in High-Energy Scattering Processes Off Nuclei parameters fixed from the calculation of the ground-state observables, the semi-inclusive reaction of type A(e,ep)X has been calculated taking final state interaction effects into account within a Glauber type calculation as in Ref. [7]; the comparison between the resulting distorted and undistorted momentum distributions provides an estimate of the transparency of the nuclear medium to the propagation of the hit proton. The effect of color transparency has also been considered within the approach of [8,9]; it is shown that at high values of Q^2 finite formation time effects strongly reduce the final state interaction, consistently with the idea of a reduced interaction of the hadron produced inside the nucleus [10]. The total neutron-nucleus cross section at high energies has also been calculated [11] by considering the effects of nucleon-nucleon correlations, which are found to increase the cross section by about 10% in disagreement with the experimental data. The inclusion of inelastic shadowing effects of Refs. [12,13] decreases back the cross section, leading to a good agreement between experimental data and theoretical calculations.
65 - J. Nieves 2005
A previous model on inclusive charged-current quasi-elastic nuclear reactions is extended to include neutral- and charged-current nucleon emission reactions. The problem of outgoing nucleon propagation is treated by means of a Monte Carlo simulation.
The sensitivity of nucleon-nucleus elastic scattering observables to the off-shell structure of nucleon-nucleon t-matrices, derived from realistic NN potentials, is investigated within the context of a full-folding model based on the impulse approxim ation. Our study uses recently developed NN potential models, which describe a subset of the NN data base with a $chi^2$ per datum $sim$1, which means that the NN t-matrices are essentially on-shell equivalent. We calculate proton-nucleus elastic scattering observables for $^{16}$O, $^{40}$Ca, and $^{208}$Pb between 100 and 200 MeV laboratory energy. We find that the elastic scattering observables are insensitive to off-shell differences of the employed NN t-matrices. A more detailed investigation of the scattering equation and the optical potential as given in a factorized approximation reveals that the elastic scattering observables do not sample the NN t-matrices very far off-shell where they exhibit differences.
119 - P.G. Blunden , W. Melnitchouk , 2005
A detailed study of two-photon exchange in unpolarized and polarized elastic electron--nucleon scattering is presented, taking particular account of nucleon finite size effects. Contributions from nucleon elastic intermediate states are found to have a strong angular dependence, which leads to a partial resolution of the discrepancy between the Rosenbluth and polarization transfer measurements of the proton electric to magnetic form factor ratio, G_E/G_M. The two-photon exchange contribution to the longitudinal polarization transfer P_L is small, whereas the contribution to the transverse polarization transfer P_T is enhanced at backward angles by several percent, increasing with Q^2. This gives rise to a small, ~3% suppression of G_E/G_M obtained from the polarization transfer ratio P_T/P_L at large Q^2. We also compare the two-photon exchange effects with data on the ratio of e^+ p to e^- p cross sections, which is predicted to be enhanced at backward angles. Finally, we evaluate the corrections to the form factors of the neutron, and estimate the elastic intermediate state contribution to the ^3He form factors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا