ترغب بنشر مسار تعليمي؟ اضغط هنا

Model of Centauro and strangelet production in heavy ion collisions

246   0   0.0 ( 0 )
 نشر من قبل Yuri Kharlov
 تاريخ النشر 2003
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss the phenomenological model of Centauro event production in relativistic nucleus-nucleus collisions. This model makes quantitative predictions for kinematic observables, baryon number and mass of the Centauro fireball and its decay products. Centauros decay mainly to nucleons, strange hyperons and possibly strangelets. Simulations of Centauro events for the CASTOR detector in Pb-Pb collisions at LHC energies are performed. The signatures of these events are discussed in detail.



قيم البحث

اقرأ أيضاً

We study the formation of large hyper-fragments in relativistic heavy-ion collisions within two transport models, DCM and UrQMD. Our goal is to explore a new mechanism for the formation of strange nuclear systems via capture of hyperons by relatively cold spectator matter produced in semi-peripheral collisions. We investigate basic characteristics of the produced hyper-spectators and evaluate the production probabilities of multi-strange systems. Advantages of the proposed mechanisms over an alternative coalescence mechanism are analysed. We also discuss how such systems can be detected taking into account the background of free hyperons. This investigation is important for the development of new experimental methods for producing hyper-nuclei in peripheral relativistic nucleus-nucleus collisions, which are now underway at GSI and are planned for the future FAIR and NICA facilities.
117 - X. S. Fang , C. M. Ko , G. Q. Li 1994
The relativistic transport model, in which the nucleon effective mass is connected to the scalar field while its energy is shifted by the vector potential, is extended to include the kaon degree of freedom. We further take into account the medium mod ification of the kaon mass due to the explicit chiral symmetry breaking. Both the propagation of kaons in the mean-field potential and the kaon-baryon elastic scattering are explicitly treated in our study. We find that the attractive kaon scalar mean-field potential in the dense matter leads to an enhanced kaon yield in heavy-ion collisions at energies of about 1 GeV/nucleon. The final-state kaon-baryon scattering is seen to affect significantly the kaon momentum spectra, leading to an enhanced yield of kaons with large momenta or at large laboratory angles. With a soft nuclear equation of state and including the attractive kaon scalar potential, the calculated kaon energy spectra agree with the data from the heavy-ion synchrotron at GSI.
The yields for hadrons and even light nuclei measured at midrapidity in relativistic heavy ion collisions are found to be dictated exclusively by their thermal Boltzmann factor for a common temperature of approximately 155 MeV. The reason for the val idity of the thermal model description is widely discussed. Here, we offer a new type of argument in its favor.
We review hadron production in heavy ion collisions with emphasis on pion and kaon production at energies below 2 AGeV and on partonic collectivity at RHIC energies.
101 - Xin Dong , Yen-jie Lee , Ralf Rapp 2019
The ultra-relativistic heavy-ion programs at the Relativistic Heavy Ion Collider and the Large Hadron Collider have evolved into a phase of quantitative studies of Quantum Chromodynamics at very high temperatures. The charm and bottom hadron producti on offer unique insights into the remarkable transport properties and the microscopic structure of the Quark-Gluon Plasma (QGP) created in these collisions. Heavy quarks, due to their large masses, undergo Brownian motion at low momentum, provide a window on hadronization mechanisms at intermediate momenta, and are expected to merge into a radiative-energy loss regime at high momentum. We review recent experimental and theoretical achievements on measuring a variety of heavy-flavor observables, characterizing the different regimes in momentum, extracting pertinent transport coefficients and deducing implications for the inner workings of the QGP medium.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا