ترغب بنشر مسار تعليمي؟ اضغط هنا

Hadron Production in Heavy Ion Collisions

111   0   0.0 ( 0 )
 نشر من قبل Hans Georg Ritter
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We review hadron production in heavy ion collisions with emphasis on pion and kaon production at energies below 2 AGeV and on partonic collectivity at RHIC energies.

قيم البحث

اقرأ أيضاً

101 - Xin Dong , Yen-jie Lee , Ralf Rapp 2019
The ultra-relativistic heavy-ion programs at the Relativistic Heavy Ion Collider and the Large Hadron Collider have evolved into a phase of quantitative studies of Quantum Chromodynamics at very high temperatures. The charm and bottom hadron producti on offer unique insights into the remarkable transport properties and the microscopic structure of the Quark-Gluon Plasma (QGP) created in these collisions. Heavy quarks, due to their large masses, undergo Brownian motion at low momentum, provide a window on hadronization mechanisms at intermediate momenta, and are expected to merge into a radiative-energy loss regime at high momentum. We review recent experimental and theoretical achievements on measuring a variety of heavy-flavor observables, characterizing the different regimes in momentum, extracting pertinent transport coefficients and deducing implications for the inner workings of the QGP medium.
The dynamics of partons and hadrons in relativistic nucleus-nucleus collisions is analyzed within the novel Parton-Hadron-String Dynamics (PHSD) transport approach, which is based on a dynamical quasiparticle model for the partonic phase (DQPM) inclu ding a dynamical hadronization scheme. The PHSD approach is applied to nucleus-nucleus collisions from low SPS to LHC energies. The traces of partonic interactions are found in particular in the elliptic flow of hadrons and in their transverse mass spectra. We investigate also the equilibrium properties of strongly-interacting infinite parton-hadron matter characterized by transport coefficients such as shear and bulk viscosities and the electric conductivity in comparison to lattice QCD results.
144 - A. Ohnishi , S. Cho , T. Furumoto 2013
We discuss the exotic hadron structure and hadron-hadron interactions in view of heavy ion collisions. First, we demonstrate that a hadronic molecule with a large spatial size would be produced more abundantly in the coalescence model compared with t he statistical model result. Secondly, we constrain the Lambda-Lambda interaction by using the recently measured Lambda-Lambda correlation data. We find that the RHIC-STAR data favor the Lambda-Lambda scattering parameters in the range 1/a_0 <= -0.8 fm^{-1} and r_{eff} >= 3 fm.
The fragmentation of quasi-projectiles from the nuclear reaction $^{40}Ca$ + $^{12}C$ at 25 MeV/nucleon was used to produce excited states candidates to $alpha$-particle condensation. The experiment was performed at LNS-Catania using the CHIMERA mult idetector. Accepting the emission simultaneity and equality among the $alpha$-particle kinetic energies as experimental criteria for deciding in favor of the condensate nature of an excited state, we analyze the $0_2^+$ and $2_2^+$ states of $^{12}$C and the $0_6^+$ state of $^{16}$O. A sub-class of events corresponding to the direct 3-$alpha$ decay of the Hoyle state is isolated.
The yields for hadrons and even light nuclei measured at midrapidity in relativistic heavy ion collisions are found to be dictated exclusively by their thermal Boltzmann factor for a common temperature of approximately 155 MeV. The reason for the val idity of the thermal model description is widely discussed. Here, we offer a new type of argument in its favor.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا