ترغب بنشر مسار تعليمي؟ اضغط هنا

Why does the thermal model for hadron production in heavy ion collisions work?

161   0   0.0 ( 0 )
 نشر من قبل Berndt Muller
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The yields for hadrons and even light nuclei measured at midrapidity in relativistic heavy ion collisions are found to be dictated exclusively by their thermal Boltzmann factor for a common temperature of approximately 155 MeV. The reason for the validity of the thermal model description is widely discussed. Here, we offer a new type of argument in its favor.



قيم البحث

اقرأ أيضاً

We review hadron production in heavy ion collisions with emphasis on pion and kaon production at energies below 2 AGeV and on partonic collectivity at RHIC energies.
The dynamics of partons and hadrons in relativistic nucleus-nucleus collisions is analyzed within the novel Parton-Hadron-String Dynamics (PHSD) transport approach, which is based on a dynamical quasiparticle model for the partonic phase (DQPM) inclu ding a dynamical hadronization scheme. The PHSD approach is applied to nucleus-nucleus collisions from low SPS to LHC energies. The traces of partonic interactions are found in particular in the elliptic flow of hadrons and in their transverse mass spectra. We investigate also the equilibrium properties of strongly-interacting infinite parton-hadron matter characterized by transport coefficients such as shear and bulk viscosities and the electric conductivity in comparison to lattice QCD results.
198 - A. Ohnishi , S. Cho , T. Furumoto 2013
We discuss the exotic hadron structure and hadron-hadron interactions in view of heavy ion collisions. First, we demonstrate that a hadronic molecule with a large spatial size would be produced more abundantly in the coalescence model compared with t he statistical model result. Secondly, we constrain the Lambda-Lambda interaction by using the recently measured Lambda-Lambda correlation data. We find that the RHIC-STAR data favor the Lambda-Lambda scattering parameters in the range 1/a_0 <= -0.8 fm^{-1} and r_{eff} >= 3 fm.
We discuss the phenomenological model of Centauro event production in relativistic nucleus-nucleus collisions. This model makes quantitative predictions for kinematic observables, baryon number and mass of the Centauro fireball and its decay products . Centauros decay mainly to nucleons, strange hyperons and possibly strangelets. Simulations of Centauro events for the CASTOR detector in Pb-Pb collisions at LHC energies are performed. The signatures of these events are discussed in detail.
We investigate the $LambdaLambda$ and $K^-p$ intensity correlations in high-energy heavy-ion collisions. First, we examine the dependence of the $LambdaLambda$ correlation on the $LambdaLambda$ interaction and the $LambdaLambda$ pair purity probabili ty $lambda$. For small $lambda$, the correlation function needs to be suppressed by the $LambdaLambda$ interaction in order to explain the recently measured $LambdaLambda$ correlation data. By comparison, when we adopt the $lambda$ value evaluated from the experimentally measured $Sigma^0/Lambda$ ratio, the correlation function needs to be enhanced by the interaction. We demonstrate that these two cases correspond to the two analyses which gave opposite signs of the $LambdaLambda$ scattering length. Next, we discuss the $K^-p$ correlation function. By using the local $bar{K}N$ potential which reproduces the kaonic hydrogen data by SIDDHARTA, we obtain the $K^-p$ correlation function. We find that the $K^-p$ correlation can provide a complementary information with the $K^{-}p$ elastic scattering amplitude.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا