ترغب بنشر مسار تعليمي؟ اضغط هنا

Influence of the Coulomb Interaction on the Chemical Equilibrium of Nuclear Systems at Break-Up

51   0   0.0 ( 0 )
 نشر من قبل W. Udo Schroeder
 تاريخ النشر 2000
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The importance of a Coulomb correction to the formalism proposed by Albergo et al. for determining the temperatures of nuclear systems at break-up and the ensities of free nucleon gases is discussed. While the proposed correction has no effect on the temperatures extracted based on double isotope ratios, it becomes non-negligible when such temperatures or densities of free nucleon gases are extracted based on multiplicities of heavier fragments of different atomic numbers.


قيم البحث

اقرأ أيضاً

88 - A.S. Botvina , 2005
We present an overview of concepts and results obtained with statistical models in study of nuclear multifragmentation. Conceptual differences between statistical and dynamical approaches, and selection of experimental observables for identification of these processes, are outlined. New and perspective developments, like inclusion of in-medium modifications of the properties of hot primary fragments, are discussed. We list important applications of statistical multifragmentation in other fields of research.
Theoretical calculations are performed to investigate the angular momentum and Coulomb effects on fragmentation and multifragmentation in peripheral heavy-ion collisions at Fermi energies. Inhomogeneous distributions of hot fragments in the freeze-ou t volume are taken into account by microcanonical Markov chain calculations within the Statistical Multifragmentation Model (SMM). Including an angular momentum and a long-range Coulomb interaction between projectile and target residues leads to new features in the statistical fragmentation picture. In this case, one can obtain specific correlations of sizes of emitted fragments with their velocities and an emission in the reaction plane. In addition, one may see a significant influence of these effects on the isotope production both in the midrapidity and in the kinematic regions of the projectile/target. The relation of this approach to the simulations of such collisions with dynamical models is also discussed.
The unambiguous observation of a Chiral Magnetic Effect (CME)-driven charge separation is the core aim of the isobar program at RHIC consisting of ${^{96}_{40}}$Zr+${^{96}_{40}}$Zr and ${^{96}_{44}}$Ru+${^{96}_{44}}$Ru collisions at $sqrt {s_{rm NN}} !=!200$ GeV. We quantify the role of the spatial distributions of the nucleons in the isobars on both eccentricity and magnetic field strength within a relativistic hadronic transport approach (SMASH, Simulating Many Accelerated Strongly-interacting Hadrons). In particular, we introduce isospin-dependent nucleon-nucleon spatial correlations in the geometric description of both nuclei, deformation for ${^{96}_{44}}$Ru and the so-called neutron skin effect for the neutron-rich isobar i.e. ${^{96}_{40}}$Zr. The main result of this study is a reduction of the magnetic field strength difference between ${^{96}_{44}}$Ru+${^{96}_{44}}$Ru and ${^{96}_{40}}$Zr+${^{96}_{40}}$Zr by a factor of 2, from $10%$ to $5%$ in peripheral collisions when the neutron-skin effect is included. Further, we find an increase of eccentricity by up to 10$%$ when deformation is taken into account while neither the neutron skin effect nor the nucleon-nucleon correlations result into a significant modification of this observable with respect to the traditional Woods-Saxon modeling. Our results suggest a significantly smaller CME signal to background ratio for the experimental charge separation measurement in peripheral collisions with the isobar systems than previously expected.
Studies on the isospin of fragments resulting from the disassembly of highly excited large thermal-like nuclear emitting sources, formed in the ^{197}Au + ^{197}Au reaction at 35 MeV/nucleon beam energy, are presented. Two different decay systems (th e quasiprojectile formed in midperipheral reactions and the unique source coming from the incomplete fusion of projectile and target in the most central collisions) were considered; these emitting sources have the same initial N/Z ratio and excitation energy (E^* ~= 5--6 MeV/nucleon), but different size. Their charge yields and isotopic content of the fragments show different distributions. It is observed that the neutron content of intermediate mass fragments increases with the size of the source. These evidences are consistent with chemical equilibrium reached in the systems. This fact is confirmed by the analysis with the statistical multifragmentation model.
We investigate a large angle photodisintegration of two nucleons from the $^3$He nucleus within the framework of the hard rescattering model (HRM). In the HRM a quark of one nucleon knocked out by an incoming photon rescatters with a quark of the oth er nucleon leading to the production of two nucleons with large relative momentum. Assuming the dominance of the quark-interchange mechanism in a hard NN scattering, the HRM allows to express the amplitude of a two-nucleon break-up reaction through the convolution of photon-quark scattering, $NN$ hard scattering amplitude and nuclear spectral function. The photon-quark scattering amplitude can be explicitly calculated in the high energy regime, whereas for $NN$ scattering one uses the fit of the available experimental data. The HRM predicts several specific features for the hard breakup reaction. First, the cross section will approximately scale as $s^{-11}$. Secondly, the $s^{11}$ weighted cross section will have the shape of energy dependence similar to that of $s^{10}$ weighted $NN$ elastic scattering cross section. Also one predicts an enhancement of the $pp$ breakup relative to the $pn$ breakup cross section as compared to the results from low energy kinematics. Another result is the prediction of different spectator momentum dependencies of $pp$ and $pn$ breakup cross sections. This is due to the fact that same-helicity $pp$-component is strongly suppressed in the ground state wave function of $^3$He. Because of this suppression the HRM predicts significantly different asymmetries for the cross section of polarization transfer $NN$ breakup reactions for circularly polarized photons. For the $pp$ breakup this asymmetry is predicted to be zero while for the $pn$ it is close to ${2over 3}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا