ترغب بنشر مسار تعليمي؟ اضغط هنا

Influence of the neutron-skin effect on nuclear isobar collisions at RHIC

58   0   0.0 ( 0 )
 نشر من قبل Alba Soto-Ontoso
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The unambiguous observation of a Chiral Magnetic Effect (CME)-driven charge separation is the core aim of the isobar program at RHIC consisting of ${^{96}_{40}}$Zr+${^{96}_{40}}$Zr and ${^{96}_{44}}$Ru+${^{96}_{44}}$Ru collisions at $sqrt {s_{rm NN}}!=!200$ GeV. We quantify the role of the spatial distributions of the nucleons in the isobars on both eccentricity and magnetic field strength within a relativistic hadronic transport approach (SMASH, Simulating Many Accelerated Strongly-interacting Hadrons). In particular, we introduce isospin-dependent nucleon-nucleon spatial correlations in the geometric description of both nuclei, deformation for ${^{96}_{44}}$Ru and the so-called neutron skin effect for the neutron-rich isobar i.e. ${^{96}_{40}}$Zr. The main result of this study is a reduction of the magnetic field strength difference between ${^{96}_{44}}$Ru+${^{96}_{44}}$Ru and ${^{96}_{40}}$Zr+${^{96}_{40}}$Zr by a factor of 2, from $10%$ to $5%$ in peripheral collisions when the neutron-skin effect is included. Further, we find an increase of eccentricity by up to 10$%$ when deformation is taken into account while neither the neutron skin effect nor the nucleon-nucleon correlations result into a significant modification of this observable with respect to the traditional Woods-Saxon modeling. Our results suggest a significantly smaller CME signal to background ratio for the experimental charge separation measurement in peripheral collisions with the isobar systems than previously expected.

قيم البحث

اقرأ أيضاً

It is widely acknowledged that heavy flavor probes are sensitive to the properties of the quark-gluon plasma and are often considered an important tool for the plasma tomography studies. Forward rapidity observables can provide further insight on the dynamics of the medium due to the interplay between the medium size and the differences in the production spectra of heavy quark probes. In this proceedings we present the nuclear modification factor $R_text{AA}$s for B and D mesons, as well as heavy flavor leptons, in the rapidity range $-4.0 < y < 4.0$ obtained from relativistic Langevin equation with gluon radiation coupled with a (3+1)-dimensional viscous hydrodynamics medium background. We present comparison with experimental data at mid-rapidity as well as predictions for different rapidity ranges.
We argue that the reaction mechanism for the coherent pion production is not known with sufficient accuracy to determine the neutron radius of 208Pb to the claimed precision of 0.03 fm.
225 - Chun Shen , Bjorn Schenke 2017
We present a fully three-dimensional initial state model for relativistic heavy-ion collisions at RHIC Beam Energy Scan (BES) collision energies. The initial energy and net baryon density profiles are produced based on a classical string deceleration model. The baryon stopping and fluctuations during this early stage of the collision are investigated by studying the net baryon rapidity distribution and longitudinal decorrelation of the transverse geometry.
The isobar model EtaMAID has been updated with new and high precision data for eta and etaprime photoproduction on protons and neutrons from MAMI, ELSA, GRAAL and CLAS. The background is described in a recently developed Regge-cut model, and for the resonance part the whole list of nucleon resonances has been investigated with 21 N* states contributing to eta photoproduction and 12 N* states contributing to etaprime photoproduction. A new approach is discussed to avoid double counting in the overlap region of Regge and resonances. A comparison is done among four newly updated partial waves analyses for observables and partial waves. Finally, the possibility of a narrow resonance near W=1900 MeV is discussed, that would be able to explain unexpected energy and angular dependence of observables in p(gamma,etaprime)p near etaprime threshold.
We analyze the transverse momentum distribution of $J/psi$ mesons produced in Au + Au collisions at the top RHIC energy within a blast-wave model that accounts for a possible inhomogeneity of the charmonium distribution and/or flow fluctuations. The results imply that the transverse momentum spectra of$J/psi$, $phi$ and $Omega$ hadrons measured at the RHIC can be described well if kinetic freeze-out takes place just after chemical freeze-out for these particles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا