ترغب بنشر مسار تعليمي؟ اضغط هنا

Influence of angular momentum and Coulomb interaction of colliding nuclei on their multifragmentation

133   0   0.0 ( 0 )
 نشر من قبل Nihal Buyukcizmeci
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Theoretical calculations are performed to investigate the angular momentum and Coulomb effects on fragmentation and multifragmentation in peripheral heavy-ion collisions at Fermi energies. Inhomogeneous distributions of hot fragments in the freeze-out volume are taken into account by microcanonical Markov chain calculations within the Statistical Multifragmentation Model (SMM). Including an angular momentum and a long-range Coulomb interaction between projectile and target residues leads to new features in the statistical fragmentation picture. In this case, one can obtain specific correlations of sizes of emitted fragments with their velocities and an emission in the reaction plane. In addition, one may see a significant influence of these effects on the isotope production both in the midrapidity and in the kinematic regions of the projectile/target. The relation of this approach to the simulations of such collisions with dynamical models is also discussed.



قيم البحث

اقرأ أيضاً

153 - Supriya Goyal 2011
Using the quantum molecular dynamics model, we study the role of mass asymmetry of colliding nuclei on the fragmentation at the balance energy and on its mass dependence. The study is done by keeping the total mass of the system fixed as 40, 80, 160, and 240 and by varying the mass asymmetry of the ($eta$ = $frac{A_{T}-A_{P}}{A_{T}+A_{P}}$; where $A_{T}$ and $A_{P}$ are the masses of the target and projectile, respectively) reaction from 0.1 to 0.7. Our results clearly indicate a sizeable effect of the mass asymmetry on the multiplicity of various fragments. The mass asymmetry dependence of various fragments is found to increase with increase in total system mass (except for heavy mass fragments). Similar to symmetric reactions, a power law system mass dependence of various fragment multiplicities is also found to exit for large asymmetries.
Multifragmentation reactions are dominating processes for the decomposition of highly excited nuclei leading to the fragment production in heavy-ion collisions. At high energy reactions strange particles are abundantly produced. We present a novel de velopment of the Statistical multifragmentation model (SMM) as its generalization for the hyper-matter which is formed after the hyperon capture. In this way, it is possible to describe its disintegration into normal and hyper-nuclei. Some properties of hyper-nuclei and their binding energies can be determined from the comparison of the isotope yields. The main focus of this method is to investigate strange and multi-strange hypernuclei since their properties are not easy to measure in traditional hyper-nuclei experiments.
[Background] Single-reference density functional theory is very successful in reproducing bulk nuclear properties like binding energies, radii, or quadrupole moments throughout the entire periodic table. Its extension to the multi-reference level all ows for restoring symmetries and, in turn, for calculating transition rates. [Purpose] We propose a new no-core-configuration-interaction (NCCI) model treating properly isospin and rotational symmetries. The model is applicable to any nucleus irrespective of its mass and neutron- and proton-number parity. It properly includes polarization effects caused by an interplay between the long- and short-range forces acting in the atomic nucleus. [Methods] The method is based on solving the Hill-Wheeler-Griffin equation within a model space built of linearly-dependent states having good angular momentum and properly treated isobaric spin. The states are generated by means of the isospin and angular-momentum projection applied to a set of low-lying (multi)particle-(multi)hole deformed Slater determinants calculated using the self-consistent Skyrme-Hartree-Fock approach. [Results] The theory is applied to calculate energy spectra in N~Z nuclei that are relevant from the point of view of a study of superallowed Fermi beta-decays. In particular, a new set of the isospin-symmetry-breaking corrections to these decays is given. [Conclusions] It is demonstrated that the NCCI model is capable to capture main features of low-lying energy spectra in light and medium-mass nuclei using relatively small model space and without any local readjustment of its low-energy coupling constants. Its flexibility and a range of applicability makes it an interesting alternative to the conventional nuclear shell model.
The optical potential of halo and weakly bound nuclei has a long range part due to the coupling to breakup that damps the elastic scattering angular distributions. In order to describe correctly the breakup channel in the case of scattering on a heav y target, core recoil effects have to be taken into account. We show here that core recoil and nuclear breakup of the valence nucleon can be consistently taken into account. A microscopic absorptive potential is obtained within a semiclassical approach and its characteristics can be understood in terms of the properties of the halo wave function and of the reaction mechanism. Results for the case of medium to high energy reactions are presented.
166 - H.L. Liu , F.R. Xu , P.M. Walker 2011
We investigate the influence of deformation on the possible occurrence of long-lived $K$ isomers in Hf isotopes around N=116, using configuration-constrained calculations of potential-energy surfaces. Despite having reduced shape elongation, the mult i-quasiparticle states in $^{186,188}$Hf remain moderately robust against triaxial distortion, supporting the long expected occurrence of exceptionally long-lived isomers. The calculations are compared with available experimental data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا