ﻻ يوجد ملخص باللغة العربية
The LUNA (Laboratory Underground for Nuclear Astrophysics) facility has been designed to study nuclear reactions of astrophysical interest. It is located deep underground in the Gran Sasso National Laboratory, Italy. Two electrostatic accelerators, with 50 and 400 kV maximum voltage, in combination with solid and gas target setups allowed to measure the total cross sections of the radiative capture reactions $^2$H(p,$gamma$)3He and $^{14}$N(p,$gamma$)$^{15}$O within their relevant Gamow peaks. We report on the gamma background in the Gran Sasso laboratory measured by germanium and bismuth germanate detectors, with and without an incident proton beam. A method to localize the sources of beam induced background using the Doppler shift of emitted gamma rays is presented. The feasibility of radiative capture studies at energies of astrophysical interest is discussed for several experimental scenarios.
The muLan experiment at the Paul Scherrer Institute will measure the lifetime of the positive muon with a precision of 1 ppm, giving a value for the Fermi coupling constant G_F at the level of 0.5 ppm. Meanwhile, by measuring the observed lifetime of
Background:The design of new nuclear reactors and transmutation devices requires to reduce the present neutron cross section uncertainties of minor actinides. Purpose: Reduce the $^{243}$Am(n,$gamma$) cross section uncertainty. Method: The $^{243}$Am
The formalism that describes radiative-capture reactions at low energies within an extended two-cluster potential model is presented. Construction of the operator of single-photon emission is based on a generalisation of the Siegert theorem with whic
We report on a new measurement of $^{14}$N(p,$gamma$)$^{15}$O for the ground state capture transition at $E_p$ = 360, 380 and 400 keV, using the 400 kV LUNA accelerator. The true coincidence summing effect --the major source of error in the ground st
We report the first measurement of the total MUON flux underground at the Davis Campus of the Sanford Underground Research Facility at the 4850 ft level. Measurements were done with the Majorana Demonstrator veto system arranged in two different conf