ترغب بنشر مسار تعليمي؟ اضغط هنا

Precision muon lifetime and capture experiments at PSI

89   0   0.0 ( 0 )
 نشر من قبل Frederick Gray
 تاريخ النشر 2004
  مجال البحث
والبحث باللغة English
 تأليف F.E. Gray




اسأل ChatGPT حول البحث

The muLan experiment at the Paul Scherrer Institute will measure the lifetime of the positive muon with a precision of 1 ppm, giving a value for the Fermi coupling constant G_F at the level of 0.5 ppm. Meanwhile, by measuring the observed lifetime of the negative muon in pure hydrogen, the muCap experiment will determine the rate of muon capture, giving the protons pseudoscalar coupling g_p to 7%. This coupling can be calculated precisely from heavy baryon chiral perturbation theory and therefore permits a test of QCDs chiral symmetry.



قيم البحث

اقرأ أيضاً

144 - Peter Kammel 2003
We survey a new generation of precision muon lifetime experiments. The goal of the MuCap experiment is a determination of the rate for muon capture on the free proton to 1 percent, from which the induced pseudoscalar form factor $g_P$ of the nucleon can be derived with 7 percent precision. A measurement of the related $mu$d capture process with similar precision would provide unique information on the axial current in the two nucleon system, relevant for fundamental neutrino reactions on deuterium. The MuLan experiment aims to measure the positive muon lifetime with 20 fold improved precision compared to present knowledge in order to determine the Fermi Coupling Constant $G_F$ to better than 1 ppm.
178 - Frederick Gray 2008
By measuring the lifetime of the negative muon in pure protium (hydrogen-1), the MuCap experiment determines the rate of muon capture on the proton, from which the protons pseudoscalar coupling g_p may be inferred. A precision of 15% for g_p has been published; this is a step along the way to a goal of 7%. This coupling can be calculated precisely from heavy baryon chiral perturbation theory and therefore permits a test of QCDs chiral symmetry. Meanwhile, the MuSun experiment is in its final design stage; it will measure the rate of muon capture on the deuteron using a similar technique. This process can be related through pionless effective field theory and chiral perturbation theory to other two-nucleon reactions of astrophysical interest, including proton-proton fusion and deuteron breakup.
The MuCap experiment at the Paul Scherrer Institute has measured the rate L_S of muon capture from the singlet state of the muonic hydrogen atom to a precision of 1%. A muon beam was stopped in a time projection chamber filled with 10-bar, ultra-pure hydrogen gas. Cylindrical wire chambers and a segmented scintillator barrel detected electrons from muon decay. L_S is determined from the difference between the mu- disappearance rate in hydrogen and the free muon decay rate. The result is based on the analysis of 1.2 10^10 mu- decays, from which we extract the capture rate L_S = (714.9 +- 5.4(stat) +- 5.1(syst)) s^-1 and derive the protons pseudoscalar coupling g_P(q^2_0 = -0.88 m^2_mu) = 8.06 +- 0.55.
134 - Peter Kammel 2008
The singlet capture rate $Lambda_S$ for the semileptonic weak process $mu+p to n+ u_mu$ has been measured in the MuCap experiment. The novel experimental technique is based on stopping muons in an active target, consisting of a time projection chambe r operating with ultra-pure hydrogen. This allows the unambiguous determination of the pseudoscalar form factor $g_P$ of the charged electroweak current of the nucleon. Our first result $g_P(q^2=-0.88 m^2_mu) = 7.3 pm 1.1 $ is consistent with accurate theoretical predictions and constitutes an important test of QCD symmetries. Additional data are being collected with the aim of a three-fold reduction of the experimental uncertainties. Building on the developed advanced techniques, the new MuSun experiment is being planned to measure the muon capture rate on the deuteron to 1.5% precision. This would provide the by far most accurate experimental information on the axial current interacting with the two-nucleon system and determine the low energy constant $L_{1A}$ relevant for solar neutrino reactions. Muon induced atomic and molecular processes represent challenges as well as opportunities for this science program, and their interplay with the main nuclear and weak-interaction physics aspects will be discussed.
The LUNA (Laboratory Underground for Nuclear Astrophysics) facility has been designed to study nuclear reactions of astrophysical interest. It is located deep underground in the Gran Sasso National Laboratory, Italy. Two electrostatic accelerators, w ith 50 and 400 kV maximum voltage, in combination with solid and gas target setups allowed to measure the total cross sections of the radiative capture reactions $^2$H(p,$gamma$)3He and $^{14}$N(p,$gamma$)$^{15}$O within their relevant Gamow peaks. We report on the gamma background in the Gran Sasso laboratory measured by germanium and bismuth germanate detectors, with and without an incident proton beam. A method to localize the sources of beam induced background using the Doppler shift of emitted gamma rays is presented. The feasibility of radiative capture studies at energies of astrophysical interest is discussed for several experimental scenarios.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا