ترغب بنشر مسار تعليمي؟ اضغط هنا

Ground state capture in $^{14}$N(p,$gamma$)$^{15}$O studied above the 259 keV resonance at LUNA

537   0   0.0 ( 0 )
 نشر من قبل Michele Marta
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on a new measurement of $^{14}$N(p,$gamma$)$^{15}$O for the ground state capture transition at $E_p$ = 360, 380 and 400 keV, using the 400 kV LUNA accelerator. The true coincidence summing effect --the major source of error in the ground state capture determination-- has been significantly reduced by using a Clover--type gamma detector.



قيم البحث

اقرأ أيضاً

The slowest reaction in the CNO cycle 14N(p, gamma)15O has been studied by populating the E^lab_p =278 keV (E^r_c.m.=259 keV) proton capture resonant state of ^{15}O at 7556 keV. The strength of the resonance has been determined from the experimental data. The level lifetime of the sub-threshold resonant state at Ex=6792 keV, as well as the lifetimes of the 5181 keV and 6172 keV states, have been measured using the Doppler shift attenuation method (DSAM). The structural properties of the nucleus ^{15}O, such as, the level energies, transition strengths, level lifetimes, and spectroscopic factors, have been calculated theoretically by using the large basis shell model, which agrees reasonably well with the present as well as the previous experimental data.
Many new $gamma$-rays have been observed, following muon capture on $^{14}$N. One had been reported before, and the low yield is confirmed, indicating that the nuclear structure of $^{14}$N is still not understood. Gamma-rays from $^{13}$C resulting from the reaction $^{14}$N($mu^{-}$,$ u$n)$^{13}$C compare favourably with states observed in the reaction $^{14}$N($gamma$,p)$^{13}$C. More precise energies are also given for the 7017 and 6730 keV $gamma$-rays in $^{14}$C.
The $^{17}$O(p,$alpha$)$^{14}$N reaction plays a key role in various astrophysical scenarios, from asymptotic giant branch stars to classical novae. It affects the synthesis of rare isotopes such as $^{17}$O and $^{18}$F, which can provide constraint s on astrophysical models. A new direct determination of the $E_{rm R}~=~64.5$~keV resonance strength performed at the Laboratory for Underground Nuclear Astrophysics accelerator has led to the most accurate value to date, $omegagamma = 10.0 pm 1.4_{rm stat} pm 0.7_{rm syst}$~neV, thanks to a significant background reduction underground and generally improved experimental conditions. The (bare) proton partial width of the corresponding state at $E_{rm x} = 5672$~keV in $^{18}$F is $Gamma_{rm p} = 35 pm 5_{rm stat} pm 3_{rm syst}$~neV. This width is about a factor of 2 higher than previously estimated thus leading to a factor of 2 increase in the $^{17}$O(p,$alpha$)$^{14}$N reaction rate at astrophysical temperatures relevant to shell hydrogen-burning in red giant and asymptotic giant branch stars. The new rate implies lower $^{17}$O/$^{16}$O ratios, with important implications on the interpretation of astrophysical observables from these stars.
The $^{14}textrm{N(p,}gammatextrm{)}^{15}textrm{O}$ reaction is the slowest reaction of the carbon-nitrogen cycle of hydrogen burning and thus determines its rate. The precise knowledge of its rate is required to correctly model hydrogen burning in a symptotic giant branch stars. In addition, it is a necessary ingredient for a possible solution of the solar abundance problem by using the solar $^{13}$N and $^{15}$O neutrino fluxes as probes of the carbon and nitrogen abundances in the solar core. After the downward revision of its cross section due to a much lower contribution by one particular transition, capture to the ground state in $^{15}$O, the evaluated total uncertainty is still 8%, in part due to an unsatisfactory knowledge of the excitation function over a wide energy range. The present work reports precise S-factor data at twelve energies between 0.357-1.292~MeV for the strongest transition, capture to the 6.79~MeV excited state in $^{15}$O, and at ten energies between 0.479-1.202~MeV for the second strongest transition, capture to the ground state in $^{15}$O. An R-matrix fit is performed to estimate the impact of the new data on astrophysical energies. The recently suggested slight enhancement of the 6.79~MeV transition at low energy could not be confirmed. The present extrapolated zero-energy S-factors are $S_{6.79}(0)$~=~1.24$pm$0.11~keV~barn and $S_{rm GS}(0)$~=~0.19$pm$0.05~keV~barn.
The rate of the hydrogen-burning carbon-nitrogen-oxygen (CNO) cycle is controlled by the slowest process, 14N(p,gamma)15O, which proceeds by capture to the ground and several excited states in 15O. Previous extrapolations for the ground state contrib ution disagreed by a factor 2, corresponding to 15% uncertainty in the total astrophysical S-factor. At the Laboratory for Underground Nuclear Astrophysics (LUNA) 400 kV accelerator placed deep underground in the Gran Sasso facility in Italy, a new experiment on ground state capture has been carried out at 317.8, 334.4, and 353.3 keV center-of-mass energy. Systematic corrections have been reduced considerably with respect to previous studies by using a Clover detector and by adopting a relative analysis. The previous discrepancy has been resolved, and ground state capture no longer dominates the uncertainty of the total S-factor.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا