ترغب بنشر مسار تعليمي؟ اضغط هنا

Nuclear Muon Capture in Hydrogen and its Interplay with Muon Atomic Physics

129   0   0.0 ( 0 )
 نشر من قبل Peter Kammel
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English
 تأليف Peter Kammel




اسأل ChatGPT حول البحث

The singlet capture rate $Lambda_S$ for the semileptonic weak process $mu+p to n+ u_mu$ has been measured in the MuCap experiment. The novel experimental technique is based on stopping muons in an active target, consisting of a time projection chamber operating with ultra-pure hydrogen. This allows the unambiguous determination of the pseudoscalar form factor $g_P$ of the charged electroweak current of the nucleon. Our first result $g_P(q^2=-0.88 m^2_mu) = 7.3 pm 1.1 $ is consistent with accurate theoretical predictions and constitutes an important test of QCD symmetries. Additional data are being collected with the aim of a three-fold reduction of the experimental uncertainties. Building on the developed advanced techniques, the new MuSun experiment is being planned to measure the muon capture rate on the deuteron to 1.5% precision. This would provide the by far most accurate experimental information on the axial current interacting with the two-nucleon system and determine the low energy constant $L_{1A}$ relevant for solar neutrino reactions. Muon induced atomic and molecular processes represent challenges as well as opportunities for this science program, and their interplay with the main nuclear and weak-interaction physics aspects will be discussed.



قيم البحث

اقرأ أيضاً

144 - Peter Kammel 2003
We survey a new generation of precision muon lifetime experiments. The goal of the MuCap experiment is a determination of the rate for muon capture on the free proton to 1 percent, from which the induced pseudoscalar form factor $g_P$ of the nucleon can be derived with 7 percent precision. A measurement of the related $mu$d capture process with similar precision would provide unique information on the axial current in the two nucleon system, relevant for fundamental neutrino reactions on deuterium. The MuLan experiment aims to measure the positive muon lifetime with 20 fold improved precision compared to present knowledge in order to determine the Fermi Coupling Constant $G_F$ to better than 1 ppm.
117 - I.H. Hashim , H. Ejiri , F. Othman 2019
Muon capture isotope production (MuCIP) using negative ordinary muon capture reactions (OMC) is used to efficiently produce various kinds of nuclear isotopes for both fundamental and applied science studies. The large capture probability of muon into a nucleus, together with the high intensity muon beam, make it possible to produce nuclear isotopes in the order of 10^{9-10} per second depending on the muon beam intensity. Radioactive isotopes (RIs) produced by MuCIP are complementary to those produced by photon and neutron capture reactions and are used for various science and technology applications. MuCIP on ^{Nat}Mo by using the RCNP MuSIC muon beam is presented to demonstrate the feasibility of MuCIP. Nuclear isotopes produced by MuCIP are evaluated by using a pre-equilibrium (PEQ) and equilibrium (EQ) proton neutron emission model. Radioactive $^{99}$Mo isotopes and the metastable ^{99m}Tc isotopes, which are used extensively in medical science, are produced by MuCIP on ^{Nat}Mo and ^{100}Mo.
The successful precision measurement of the rate of muon capture on a proton by the MuCap Collaboration allows for a stringent test of the current theoretical understanding of this process. Chiral perturbation theory, which is a low-energy effective field theory that preserves the symmetries and the pattern of symmetry breaking in the underlying theory of QCD, offers a systematic framework for describing $mu p$ capture and provides a basic test of QCD at the hadronic level. We describe how this effective theory with no free parameters reproduces the measured capture rate. A recent study has addressed new sources of uncertainties that were not considered in the previous works, and we review to what extent these uncertainties are now under control. Finally, the rationale for studying muon capture on the deuteron and some recent theoretical developments regarding this process are discussed.
A simultaneous analysis is made of the measured rates of ordinary muon capture (OMC) and radiative muon capture (RMC) in liquid hydrogen, using theoretical estimates for the relevant atomic capture rates that have been obtained in chiral perturbation theory with the use of the most recent values of the coupling constants. We reexamine the basic formulas for relating the atomic OMC and RMC rates to the liquid-hydrogen OMC and RMC rates, respectively. Although the analysis is significantly influenced by ambiguity in the molecular state population, we can demonstrate that, while the OMC data can be reproduced, the RMC data can be explained only with unrealistic values of the coupling constants; the degree of difficulty becomes even more severe when we try to explain the OMC and RMC data simultaneously.
167 - Frederick Gray 2008
By measuring the lifetime of the negative muon in pure protium (hydrogen-1), the MuCap experiment determines the rate of muon capture on the proton, from which the protons pseudoscalar coupling g_p may be inferred. A precision of 15% for g_p has been published; this is a step along the way to a goal of 7%. This coupling can be calculated precisely from heavy baryon chiral perturbation theory and therefore permits a test of QCDs chiral symmetry. Meanwhile, the MuSun experiment is in its final design stage; it will measure the rate of muon capture on the deuteron using a similar technique. This process can be related through pionless effective field theory and chiral perturbation theory to other two-nucleon reactions of astrophysical interest, including proton-proton fusion and deuteron breakup.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا