ﻻ يوجد ملخص باللغة العربية
A logarithmic scaling for structure functions, in the form $S_p sim [ln (r/eta)]^{zeta_p}$, where $eta$ is the Kolmogorov dissipation scale and $zeta_p$ are the scaling exponents, is suggested for the statistical description of the near-dissipation range for which classical power-law scaling does not apply. From experimental data at moderate Reynolds numbers, it is shown that the logarithmic scaling, deduced from general considerations for the near-dissipation range, covers almost the entire range of scales (about two decades) of structure functions, for both velocity and passive scalar fields. This new scaling requires two empirical constants, just as the classical scaling does, and can be considered the basis for extended self-similarity.
Recent developments in turbulence are focused on the effect of large scale anisotropy on the small scale statistics of velocity increments. According to Kolmogorov, isotropy is recovered in the large Reynolds number limit as the scale is reduced and,
A new velocity scale is derived that yields a Reynolds number independent profile for the streamwise turbulent fluctuations in the near-wall region of wall bounded flows for $y^+<25$. The scaling demonstrates the important role played by the wall she
We revisit the issue of whether thermal fluctuations are relevant for incompressible fluid turbulence, and estimate the scale at which they become important. As anticipated by Betchov in a prescient series of works more than six decades ago, this sca
Within wall turbulence, there is a sublayer where the mean velocity and the variance of velocity fluctuations vary logarithmically with the height from the wall. This logarithmic scaling is also known for the mean concentration of a passive scalar. B
We study the turbulent velocity dispersion spectra of the coexistent HCN and HCO+ molecular species as a function of length scale in the M17 star-forming molecular cloud. We show that the observed downward shift of the ions spectrum relative to that