ﻻ يوجد ملخص باللغة العربية
Within wall turbulence, there is a sublayer where the mean velocity and the variance of velocity fluctuations vary logarithmically with the height from the wall. This logarithmic scaling is also known for the mean concentration of a passive scalar. By using heat as such a scalar in a laboratory experiment of a turbulent boundary layer, the existence of the logarithmic scaling is shown here for the variance of fluctuations of the scalar concentration. It is reproduced by a model of energy-containing eddies that are attached to the wall.
A new velocity scale is derived that yields a Reynolds number independent profile for the streamwise turbulent fluctuations in the near-wall region of wall bounded flows for $y^+<25$. The scaling demonstrates the important role played by the wall she
Since the introduction of the logarithmic law of the wall more than 80 years ago, the equation for the mean velocity profile in turbulent boundary layers has been widely applied to model near-surface processes and parameterise surface drag. Yet the h
Two-dimensional statistically stationary isotropic turbulence with an imposed uniform scalar gradient is investigated. Dimensional arguments are presented to predict the inertial range scaling of the turbulent scalar flux spectrum in both the inverse
Following the idea that dissipation in turbulence at high Reynolds number is by events singular in space-time and described by solutions of the inviscid Euler equations, we draw the conclusion that in such flows scaling laws should depend only on qua
We present a sweep-stick mechanism for heavy particles transported by a turbulent flow under the action of gravity. Direct numerical simulations show that these particles preferentially explore regions of the flow with close to zero Lagrangian accele