ﻻ يوجد ملخص باللغة العربية
We study the turbulent velocity dispersion spectra of the coexistent HCN and HCO+ molecular species as a function of length scale in the M17 star-forming molecular cloud. We show that the observed downward shift of the ions spectrum relative to that of the neutral is readily explained by the existence of an ambipolar diffusion range within which ion and neutral turbulent energies dissipate differently. We use these observations to evaluate this decoupling scale and show how to estimate the strength of the plane-of-the-sky component of the embedded magnetic field in a completely novel way.
The magnetic field of molecular clouds (MCs) plays an important role in the process of star formation: it determins the statistical properties of supersonic turbulence that controls the fragmentation of MCs, controls the angular momentum transport du
We revisit the issue of whether thermal fluctuations are relevant for incompressible fluid turbulence, and estimate the scale at which they become important. As anticipated by Betchov in a prescient series of works more than six decades ago, this sca
We present the results of an extensive Arecibo observational survey of magnetic field strengths in the inter-core regions of molecular clouds to determine their role in the evolution and collapse of molecular clouds as a whole. Sensitive 18 cm OH Zee
We investigate the magnetic field which is generated by turbulent motions of a weakly ionized gas. Galactic molecular clouds give us an example of such a medium. As in the Kazantsev-Kraichnan model we assume a medium to be homogeneous and a neutral g
A logarithmic scaling for structure functions, in the form $S_p sim [ln (r/eta)]^{zeta_p}$, where $eta$ is the Kolmogorov dissipation scale and $zeta_p$ are the scaling exponents, is suggested for the statistical description of the near-dissipation r