ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing the Turbulence Dissipation Range and Magnetic Field Strengths in Molecular Clouds

62   0   0.0 ( 0 )
 نشر من قبل Martin Houde
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Hua-bai Li




اسأل ChatGPT حول البحث

We study the turbulent velocity dispersion spectra of the coexistent HCN and HCO+ molecular species as a function of length scale in the M17 star-forming molecular cloud. We show that the observed downward shift of the ions spectrum relative to that of the neutral is readily explained by the existence of an ambipolar diffusion range within which ion and neutral turbulent energies dissipate differently. We use these observations to evaluate this decoupling scale and show how to estimate the strength of the plane-of-the-sky component of the embedded magnetic field in a completely novel way.

قيم البحث

اقرأ أيضاً

96 - Paolo Padoan 2017
The magnetic field of molecular clouds (MCs) plays an important role in the process of star formation: it determins the statistical properties of supersonic turbulence that controls the fragmentation of MCs, controls the angular momentum transport du ring the protostellar collapse, and affects the stability of circumstellar disks. In this work, we focus on the problem of the determination of the magnetic field strength. We review the idea that the MC turbulence is super-Alfv{e}nic, and we argue that MCs are bound to be born super-Alfv{e}nic. We show that this scenario is supported by results from a recent simulation of supernova-driven turbulence on a scale of 250 pc, where the turbulent cascade is resolved on a wide range of scales, including the interior of MCs.
We revisit the issue of whether thermal fluctuations are relevant for incompressible fluid turbulence, and estimate the scale at which they become important. As anticipated by Betchov in a prescient series of works more than six decades ago, this sca le is about equal to the Kolmogorov length, even though that is several orders of magnitude above the mean free path. This result implies that the deterministic version of the incompressible Navier-Stokes equation is inadequate to describe the dissipation range of turbulence in molecular fluids. Within this range, the fluctuating hydrodynamics equation of Landau and Lifschitz is more appropriate. In particular, our analysis implies that both the exponentially decaying energy spectrum and the far-dissipation range intermittency predicted by Kraichnan for deterministic Navier-Stokes will be generally replaced by Gaussian thermal equipartition at scales just below the Kolmogorov length. Stochastic shell model simulations at high Reynolds numbers verify our theoretical predictions and reveal furthermore that inertial-range intermittency can propagate deep into the dissipation range, leading to large fluctuations in the equipartition length scale. We explain the failure of previous scaling arguments for the validity of deterministic Navier-Stokes equations at any Reynolds number and we provide a mathematical interpretation and physical justification of the fluctuating Navier-Stokes equation as an ``effective field-theory valid below some high-wavenumber cutoff $Lambda$, rather than as a continuum stochastic partial differential equation. At Reynolds number around a million the strongest turbulent excitations observed in our simulation penetrate down to a length-scale of microns. However, for longer observation times or higher Reynolds numbers, more extreme turbulent events could lead to a local breakdown of fluctuating hydrodynamics.
We present the results of an extensive Arecibo observational survey of magnetic field strengths in the inter-core regions of molecular clouds to determine their role in the evolution and collapse of molecular clouds as a whole. Sensitive 18 cm OH Zee man observations of absorption lines from Galactic molecular gas in the direction of extragalactic continuum sources yielded 38 independent measurements of magnetic field strengths. Zeeman detections were achieved at the three sigma level toward 9 clouds, while the others revealed sensitive upper limits to the magnetic field strength. Our results suggest that total field strengths in the inter-core regions of GMCs are about 15 microgauss.
We investigate the magnetic field which is generated by turbulent motions of a weakly ionized gas. Galactic molecular clouds give us an example of such a medium. As in the Kazantsev-Kraichnan model we assume a medium to be homogeneous and a neutral g as velocity field to be isotropic and delta-correlated in time. We take into consideration the presence of a mean magnetic field, which defines a preferred direction in space and eliminates isotropy of magnetic field correlators. Evolution equations for the anisotropic correlation function are derived. Isotropic cases with zero mean magnetic field as well as with small mean magnetic field are investigated. It is shown that stationary bounded solutions exist only in the presence of the mean magnetic field for the Kolmogorov neutral gas turbulence. The dependence of the magnetic field fluctuations amplitude on the mean field is calculated. The stationary anisotropic solution for the magnetic turbulence is also obtained for large values of the mean magnetic field.
A logarithmic scaling for structure functions, in the form $S_p sim [ln (r/eta)]^{zeta_p}$, where $eta$ is the Kolmogorov dissipation scale and $zeta_p$ are the scaling exponents, is suggested for the statistical description of the near-dissipation r ange for which classical power-law scaling does not apply. From experimental data at moderate Reynolds numbers, it is shown that the logarithmic scaling, deduced from general considerations for the near-dissipation range, covers almost the entire range of scales (about two decades) of structure functions, for both velocity and passive scalar fields. This new scaling requires two empirical constants, just as the classical scaling does, and can be considered the basis for extended self-similarity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا