ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards a semiclassical understanding of chaotic single- and many-particle quantum dynamics at post-Heisenberg time scales

65   0   0.0 ( 0 )
 نشر من قبل Daniel Waltner
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Despite considerable progress during the last decades in devising a semiclassical theory for classically chaotic quantum systems a quantitative semiclassical understanding of their dynamics at late times (beyond the so-called Heisenberg time $T_H$) is still missing. This challenge, corresponding to resolving spectral structures on energy scales below the mean level spacing, is intimately related to the quest for semiclassically restoring quantum unitarity, which is reflected in real-valued spectral determinants. Guided through insights for quantum graphs we devise a periodic-orbit resummation procedure for quantum chaotic systems invoking periodic-orbit self encounters as the structuring element of a hierarchical phase space dynamics. We propose a way to purely semiclassically construct real spectral determinants based on two major underlying mechanisms: (i) Complementary contributions to the spectral determinant from regrouped pseudo orbits of duration $T < T_H$ and $T_H-T$ are complex conjugate to each other. (ii) Contributions from long periodic orbits involving multiple traversals along shorter orbits cancel out. We furthermore discuss implications for interacting $N$-particle quantum systems with a chaotic classical large-$N$ limit that have recently attracted interest in the context of many-body quantum chaos.

قيم البحث

اقرأ أيضاً

We study the quantum probability to survive in an open chaotic system in the framework of the van Vleck-Gutzwiller propagator and present the first such calculation that accounts for quantum interference effects. Specifically we calculate quantum dev iations from the classical decay after the break time for both broken and preserved time-reversal symmetry. The source of these corrections is identified in interfering pairs of correlated classical trajectories. In our approach the quantized chaotic system is modelled by a quatum graph.
We review the construction of the supersymmetric sigma model for unitary maps, using the color- flavor transformation. We then illustrate applications by three case studies in quantum chaos. In two of these cases, general Floquet maps and quantum gra phs, we show that universal spectral fluctuations arise provided the pertinent classical dynamics are fully chaotic (ergodic and with decay rates sufficiently gapped away from zero). In the third case, the kicked rotor, we show how the existence of arbitrarily long-lived modes of excitation (diffusion) precludes universal fluctuations and entails quantum localization.
We numerically study out-of-equilibrium dynamics in a family of Heisenberg models with $1/r^6$ power-law interactions and positional disorder. Using the semi-classical discrete truncated Wigner approximation (dTWA) method, we investigate the time evo lution of the magnetization and ensemble-averaged single-spin purity for a strongly disordered system after initializing the system in an out-of-equilibrium state. We find that both quantities display robust glassy behavior for almost any value of the anisotropy parameter of the Heisenberg Hamiltonian. Furthermore, a systematic analysis allows us to quantitatively show that, for all the scenarios considered, the stretch power lies close to the one analytically obtained in the Ising limit. This indicates that glassy relaxation behavior occurs widely in disordered quantum spin systems, independent of the particular symmetries and integrability of the Hamiltonian.
Two deterministic models for Brownian motion are investigated by means of numerical simulations and kinetic theory arguments. The first model consists of a heavy hard disk immersed in a rarefied gas of smaller and lighter hard disks acting as a therm al bath. The second is the same except for the shape of the particles, which is now square. The basic difference of these two systems lies in the interaction: hard core elastic collisions make the dynamics of the disks chaotic whereas that of squares is not. Remarkably, this difference is not reflected in the transport properties of the two systems: simulations show that the diffusion coefficients, velocity correlations and response functions of the heavy impurity are in agreement with kinetic theory for both the chaotic and the non-chaotic model. The relaxation to equilibrium, however, is very sensitive to the kind of interaction. These observations are used to reconsider and discuss some issues connected to chaos, statistical mechanics and diffusion.
62 - J. Bec , L. Biferale , M. Cencini 2006
Spatial distributions of heavy particles suspended in an incompressible isotropic and homogeneous turbulent flow are investigated by means of high resolution direct numerical simulations. In the dissipative range, it is shown that particles form frac tal clusters with properties independent of the Reynolds number. Clustering is there optimal when the particle response time is of the order of the Kolmogorov time scale $tau_eta$. In the inertial range, the particle distribution is no longer scale-invariant. It is however shown that deviations from uniformity depend on a rescaled contraction rate, which is different from the local Stokes number given by dimensional analysis. Particle distribution is characterized by voids spanning all scales of the turbulent flow; their signature in the coarse-grained mass probability distribution is an algebraic behavior at small densities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا