ترغب بنشر مسار تعليمي؟ اضغط هنا

Some relations between Lagrangian models and synthetic random velocity fields

50   0   0.0 ( 0 )
 نشر من قبل Piero Olla
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose an alternative interpretation of Markovian transport models based on the well-mixedness condition, in terms of the properties of a random velocity field with second order structure functions scaling linearly in the space time increments. This interpretation allows direct association of the drift and noise terms entering the model, with the geometry of the turbulent fluctuations. In particular, the well known non-uniqueness problem in the well-mixedness approach is solved in terms of the antisymmetric part of the velocity correlations; its relation with the presence of non-zero mean helicity and other geometrical properties of the flow is elucidated. The well-mixedness condition appears to be a special case of the relation between conditional velocity increments of the random field and the one-point Eulerian velocity distribution, allowing generalization of the approach to the transport of non-tracer quantities. Application to solid particle transport leads to a model satisfying, in the homogeneous isotropic turbulence case, all the conditions on the behaviour of the correlation times for the fluid velocity sampled by the particles. In particular, correlation times in the gravity and in the inertia dominated case, respectively, longer and shorter than in the passive tracer case; in the gravity dominated case, correlation times longer for velocity components along gravity, than for the perpendicular ones. The model produces, in channel flow geometry, particle deposition rates in agreement with experiments.

قيم البحث

اقرأ أيضاً

Unexpected relations between fidelity decay and cross form--factor, i.e., parametric level correlations in the time domain are found both by a heuristic argument and by comparing exact results, using supersymmetry techniques, in the framework of rand om matrix theory. A power law decay near Heisenberg time, as a function of the relevant parameter, is shown to be at the root of revivals recently discovered for fidelity decay. For cross form--factors the revivals are illustrated by a numerical study of a multiply kicked Ising spin chain.
Homoclinic and unstable periodic orbits in chaotic systems play central roles in various semiclassical sum rules. The interferences between terms are governed by the action functions and Maslov indices. In this article, we identify geometric relation s between homoclinic and unstable periodic orbits, and derive exact formulae expressing the periodic orbit classical actions in terms of corresponding homoclinic orbit actions plus certain phase space areas. The exact relations provide a basis for approximations of the periodic orbit actions as action differences between homoclinic orbits with well-estimated errors. This make possible the explicit study of relations between periodic orbits, which results in an analytic expression for the action differences between long periodic orbits and their shadowing decomposed orbits in the cycle expansion.
A detailed comparison between data from experimental measurements and numerical simulations of Lagrangian velocity structure functions in turbulence is presented. By integrating information from experiments and numerics, a quantitative understanding of the velocity scaling properties over a wide range of time scales and Reynolds numbers is achieved. The local scaling properties of the Lagrangian velocity increments for the experimental and numerical data are in good quantitative agreement for all time lags. The degree of intermittency changes when measured close to the Kolmogorov time scales or at larger time lags. This study resolves apparent disagreements between experiment and numerics.
In this paper, we establish the sharp conditions for the inclusion relations between Besov spaces $B_{p,q}$ and Wiener amalgam spaces $W_{p,q}^s$. We also obtain the optimal inclusion relations between local hardy spaces $h^p$ and Wiener amalgam spac es $W_{p,q}^s$, which completely improve and extend the main results obtained by Cunanana, Kobayashib and Sugimotoa in [J. Funct. Anal. 268 (2015), 239-254]. In addition, we establish some mild characterizations of inclusion relations between Triebel-Lizorkin and Wiener amalgam spaces, which relates some modern inequalities to classical inequalities.
Parameter-dependent statistical properties of spectra of totally connected irregular quantum graphs with Neumann boundary conditions are studied. The autocorrelation functions of level velocities c(x) and c(w,x) as well as the distributions of level curvatures and avoided crossing gaps are calculated. The numerical results are compared with the predictions of Random Matrix Theory (RMT) for Gaussian Orthogonal Ensemble (GOE) and for coupled GOE matrices. The application of coupled GOE matrices was justified by studying localization phenomena in graphs wave functions Psi(x) using the Inverse Participation Ratio (IPR) and the amplitude distribution P(Psi(x)).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا