ﻻ يوجد ملخص باللغة العربية
Homoclinic and unstable periodic orbits in chaotic systems play central roles in various semiclassical sum rules. The interferences between terms are governed by the action functions and Maslov indices. In this article, we identify geometric relations between homoclinic and unstable periodic orbits, and derive exact formulae expressing the periodic orbit classical actions in terms of corresponding homoclinic orbit actions plus certain phase space areas. The exact relations provide a basis for approximations of the periodic orbit actions as action differences between homoclinic orbits with well-estimated errors. This make possible the explicit study of relations between periodic orbits, which results in an analytic expression for the action differences between long periodic orbits and their shadowing decomposed orbits in the cycle expansion.
Homoclinic and heteroclinic orbits provide a skeleton of the full dynamics of a chaotic dynamical system and are the foundation of semiclassical sums for quantum wave packet, coherent state, and transport quantities. Here, the homoclinic orbits are o
The magnitudes of the terms in periodic orbit semiclassical trace formulas are determined by the orbits stability exponents. In this paper, we demonstrate a simple asymptotic relationship between those stability exponents and the phase-space positions of particular homoclinic points.
Semiclassical sum rules, such as the Gutzwiller trace formula, depend on the properties of periodic, closed, or homoclinic (heteroclinic) orbits. The interferences embedded in such orbit sums are governed by classical action functions and Maslov indi
Chaos is associated with stochasticity, complex, irregular motion, etc. It has some peculiar properties such as ergodicity, highly initial value sensitivity, non-periodicity and long-term unpredictability. These pseudo random features lead chaotic sy
Two deterministic models for Brownian motion are investigated by means of numerical simulations and kinetic theory arguments. The first model consists of a heavy hard disk immersed in a rarefied gas of smaller and lighter hard disks acting as a therm