ﻻ يوجد ملخص باللغة العربية
A detailed comparison between data from experimental measurements and numerical simulations of Lagrangian velocity structure functions in turbulence is presented. By integrating information from experiments and numerics, a quantitative understanding of the velocity scaling properties over a wide range of time scales and Reynolds numbers is achieved. The local scaling properties of the Lagrangian velocity increments for the experimental and numerical data are in good quantitative agreement for all time lags. The degree of intermittency changes when measured close to the Kolmogorov time scales or at larger time lags. This study resolves apparent disagreements between experiment and numerics.
We compare experimental data and numerical simulations for the dynamics of inertial particles with finite density in turbulence. In the experiment, bubbles and solid particles are optically tracked in a turbulent flow of water using an Extended Laser
Lagrangian properties obtained from a Particle Tracking Velocimetry experiment in a turbulent flow at intermediate Reynolds number are presented. Accurate sampling of particle trajectories is essential in order to obtain the Lagrangian structure func
Global spectral analysis (GSA) is used as a tool to test the accuracy of numerical methods with the help of canonical problems of convection and convection-diffusion equation which admit exact solutions. Similarly, events in turbulent flows computed
Using experimental data on thermal convection, obtained at a Rayleigh number of 1.5 $times 10^{11}$, it is shown that the temperature structure functions $<Delta T_{r}^p>$, where $Delta T_r$ is the absolute value of the temperature increment over a d
It is shown that the Truncated Euler Equations, i.e. a finite set of ordinary differential equations for the amplitude of the large-scale modes, can correctly describe the complex transitional dynamics that occur within the turbulent regime of a conf