ﻻ يوجد ملخص باللغة العربية
Supersymmetrization of a nonlinear evolution equation in which the bosonic equation is independent of the fermionic variable and the system is linear in fermionic field goes by the name B-supersymmetrization. This special type of supersymmetrization plays a role in superstring theory. We provide B-supersymmetric extension of a number of quasilinear and fully nonlinear evolution equations and find that the supersymmetric system follows from the usual action principle while the bosonic and fermionic equations are individually non Lagrangian in the field variable. We point out that B-supersymmetrization can also be realized using a generalized Noetherian symmetry such that the resulting set of Lagrangian symmetries coincides with symmetries of the bosonic field equations. This observation provides a basis to associate the bosonic and fermionic fields with the terms of bright and dark solitons. The interpretation sought by us has its origin in the classic work of Bateman who introduced a reverse-time system with negative friction to bring the linear dissipative systems within the framework of variational principle.
We point out that use of the first integral method ( J.Phys. A :Math. Gen. 35 (2002) 343 ) for solving nonlinear evolution equations gives only particular solutions of equations that model conservative systems. On the other hand, for dissipative dyna
We give a Lie-algebraic classification of third order quasilinear equations which admit non-trivial Lie point symmetries.
Group classification of a class of third-order nonlinear evolution equations generalizing KdV and mKdV equations is performed. It is shown that there are two equations admitting simple Lie algebras of dimension three. Next, we prove that there exist
We obtain new gauge-invariant forms of two-dimensional integrable systems of nonlinear equations: the Sawada-Kotera and Kaup-Kuperschmidt system, the generalized system of dispersive long waves, and the Nizhnik-Veselov-Novikov system. We show how the
New manifestly gauge-invariant forms of two-dimensional generalized dispersive long-wave and Nizhnik-Veselov-Novikov systems of integrable nonlinear equations are presented. It is shown how in different gauges from such forms famous two-dimensional g