ترغب بنشر مسار تعليمي؟ اضغط هنا

Finite dimensional quantum group covariant differential calculus on a complex matrix algebra

105   0   0.0 ( 0 )
 نشر من قبل Robert Coquereaux
 تاريخ النشر 1998
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Using the fact that the algebra M(3,C) of 3 x 3 complex matrices can be taken as a reduced quantum plane, we build a differential calculus Omega(S) on the quantum space S defined by the algebra C^infty(M) otimes M(3,C), where M is a space-time manifold. This calculus is covariant under the action and coaction of finite dimensional dual quantum groups. We study the star structures on these quantum groups and the compatible one in M(3,C). This leads to an invariant scalar product on the later space. We analyse the differential algebra Omega(M(3,C)) in terms of quantum group representations, and consider in particular the space of one-forms on S since its elements can be considered as generalized gauge fields.



قيم البحث

اقرأ أيضاً

Given a bicovariant differential calculus $(mathcal{E}, d)$ such that the braiding map is diagonalisable in a certain sense, the bimodule of two-tensors admits a direct sum decomposition into symmetric and anti-symmetric tensors. This is used to prov e the existence of a bicovariant torsionless connection on $mathcal{E}$. Following Heckenberger and Schm{u}dgen, we study invariant metrics and the compatibility of covariant connections with such metrics. A sufficient condition for the existence and uniqueness of bicovariant Levi-Civita connections is derived. This condition is shown to hold for cocycle deformations of classical Lie groups.
Using the fact that the algebra M := M_N(C) of NxN complex matrices can be considered as a reduced quantum plane, and that it is a module algebra for a finite dimensional Hopf algebra quotient H of U_q(sl(2)) when q is a root of unity, we reduce this algebra M of matrices (assuming N odd) into indecomposable modules for H. We also show how the same finite dimensional quantum group acts on the space of generalized differential forms defined as the reduced Wess Zumino complex associated with the algebra M.
We investigate the kernel space of an integral operator M(g) depending on the spin g and describing an elliptic Fourier transformation. The operator M(g) is an intertwiner for the elliptic modular double formed from a pair of Sklyanin algebras with t he parameters $eta$ and $tau$, Im$ tau>0$, Im$eta>0$. For two-dimensional lattices $g=neta + mtau/2$ and $g=1/2+neta + mtau/2$ with incommensurate $1, 2eta,tau$ and integers $n,m>0$, the operator M(g) has a finite-dimensional kernel that consists of the products of theta functions with two different modular parameters and is invariant under the action of generators of the elliptic modular double.
Observable currents are locally defined gauge invariant conserved currents; physical observables may be calculated integrating them on appropriate hypersurfaces. Due to the conservation law the hypersurfaces become irrelevant up to homology, and the main objects of interest become the observable currents them selves. Gauge inequivalent solutions can be distinguished by means of observable currents. With the aim of modeling spacetime local physics, we work on spacetime domains $Usubset M$ which may have boundaries and corners. Hamiltonian observable currents are those satisfying ${sf d_v}F=-iota_VOmega_L+{sf d_h}sigma^F$ and a certain boundary condition. The family of Hamiltonian observable currents is endowed with a bracket that gives it a structure which generalizes a Lie algebra in which the Jacobi relation is modified by the presence of a boundary term. If the domain of interest has no boundaries the resulting algebra of observables is a Lie algebra. In the resulting framework algebras of observable currents are associated to bounded domains, and the local algebras obey interesting gluing properties. These results are due to considering currents that defined only locally in field space and to a revision of the concept of gauge invariance in bounded spacetime domains. A perturbation of the field on a bounded spacetime domain is regarded as gauge if: (i) the first order holographic imprint that it leaves in any hypersurface locally splitting a spacetime domain into two subdomains is negligible according to the linearized gluing field equation, and (ii) the perturbation vanishes at the boundary of the domain. A current is gauge invariant if the variation in them induced by any gauge perturbation vanishes up to boundary terms.
332 - Yuto Moriwaki 2021
It is known that there are 48 Virasoro algebras acting on the monster conformal field theory. We call conformal field theories with such a property, which are not necessarily chiral, code conformal field theories. In this paper, we introduce a notion of a framed algebra, which is a finite-dimensional non-associative algebra, and showed that the category of framed algebras and the category of code conformal field theories are equivalent. We have also constructed a new family of integrable conformal field theories using this equivalence. These conformal field theories are expected to be useful for the study of moduli spaces of conformal field theories.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا