ﻻ يوجد ملخص باللغة العربية
We investigate the kernel space of an integral operator M(g) depending on the spin g and describing an elliptic Fourier transformation. The operator M(g) is an intertwiner for the elliptic modular double formed from a pair of Sklyanin algebras with the parameters $eta$ and $tau$, Im$ tau>0$, Im$eta>0$. For two-dimensional lattices $g=neta + mtau/2$ and $g=1/2+neta + mtau/2$ with incommensurate $1, 2eta,tau$ and integers $n,m>0$, the operator M(g) has a finite-dimensional kernel that consists of the products of theta functions with two different modular parameters and is invariant under the action of generators of the elliptic modular double.
Using the fact that the algebra M(3,C) of 3 x 3 complex matrices can be taken as a reduced quantum plane, we build a differential calculus Omega(S) on the quantum space S defined by the algebra C^infty(M) otimes M(3,C), where M is a space-time manifo
In Carqueville et al., arXiv:1809.01483, the notion of an orbifold datum $mathbb{A}$ in a modular fusion category $mathcal{C}$ was introduced as part of a generalised orbifold construction for Reshetikhin-Turaev TQFTs. In this paper, given a simple o
We introduce the notion of $n$-dimensional topological quantum field theory (TQFT) with defects as a symmetric monoidal functor on decorated stratified bordisms of dimension $n$. The familiar closed or open-closed TQFTs are special cases of defect TQ
We initiate a systematic study of 3-dimensional `defect topological quantum field theories, that we introduce as symmetric monoidal functors on stratified and decorated bordisms. For every such functor we construct a tricategory with duals, which is
These notes offer an introduction to the functorial and algebraic description of 2-dimensional topological quantum field theories `with defects, assuming only superficial familiarity with closed TQFTs in terms of commutative Frobenius algebras. The g