ﻻ يوجد ملخص باللغة العربية
Using the fact that the algebra M := M_N(C) of NxN complex matrices can be considered as a reduced quantum plane, and that it is a module algebra for a finite dimensional Hopf algebra quotient H of U_q(sl(2)) when q is a root of unity, we reduce this algebra M of matrices (assuming N odd) into indecomposable modules for H. We also show how the same finite dimensional quantum group acts on the space of generalized differential forms defined as the reduced Wess Zumino complex associated with the algebra M.
Using the fact that the algebra M(3,C) of 3 x 3 complex matrices can be taken as a reduced quantum plane, we build a differential calculus Omega(S) on the quantum space S defined by the algebra C^infty(M) otimes M(3,C), where M is a space-time manifo
Let $K$ be a simply connected compact Lie group and $T^{ast}(K)$ its cotangent bundle. We consider the problem of quantization commutes with reduction for the adjoint action of $K$ on $T^{ast}(K).$ We quantize both $T^{ast}(K)$ and the reduced phase
The concept of duality reflects a link between two seemingly different physical objects. An example in quantum mechanics is a situation where the spectra (or their parts) of two Hamiltonians go into each other under a certain transformation. We term
Random noncommutative geometry can be seen as a Euclidean path-integral approach to the quantization of the theory defined by the Spectral Action in noncommutative geometry (NCG). With the aim of investigating phase transitions in random NCG of arbit
The $(4+4)$-dimensional $kappa$-deformed quantum phase space as well as its $(10+10)$-dimensional covariant extension by the Lorentz sector can be described as Heisenberg doubles: the $(10+10)$-dimensional quantum phase space is the double of $D=4$ $