ترغب بنشر مسار تعليمي؟ اضغط هنا

A canonical decomposition for linear operators and linear relations

281   0   0.0 ( 0 )
 نشر من قبل Franciszek Szafraniec
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An arbitrary linear relation (multivalued operator) acting from one Hilbert space to another Hilbert space is shown to be the sum of a closable operator and a singular relation whose closure is the Cartesian product of closed subspaces. This decomposition can be seen as an analog of the Lebesgue decomposition of a measure into a regular part and a singular part. The two parts of a relation are characterized metrically and in terms of Stones characteristic projection onto the closure of the linear relation.

قيم البحث

اقرأ أيضاً

A Lagrangian subspace $L$ of a weak symplectic vector space is called emph{split Lagrangian} if it has an isotropic (hence Lagrangian) complement. When the symplectic structure is strong, it is sufficient for $L$ to have a closed complement, which ca n then be moved to become isotropic. The purpose of this note is to develop the theory of compositions and reductions of split canonical relations for symplectic vector spaces. We give conditions on a coisotropic subspace $C$ of a weak symplectic space $V$ which imply that the induced canonical relation $L_C$ from $V$ to $C/C^{omega}$ is split, and, from these, we find sufficient conditions for split canonical relations to compose well. We prove that the canonical relations arising in the Poisson sigma model from the Lagrangian field theoretical approach are split, giving a description of symplectic groupoids integrating Poisson manifolds in terms of split canonical relations.
Let $A$ be a, not necessarily closed, linear relation in a Hilbert space $sH$ with a multivalued part $mul A$. An operator $B$ in $sH$ with $ran Bperpmul A^{**}$ is said to be an operator part of $A$ when $A=B hplus ({0}times mul A)$, where the sum i s componentwise (i.e. span of the graphs). This decomposition provides a counterpart and an extension for the notion of closability of (unbounded) operators to the setting of linear relations. Existence and uniqueness criteria for the existence of an operator part are established via the so-called canonical decomposition of $A$. In addition, conditions are developed for the decomposition to be orthogonal (components defined in orthogonal subspaces of the underlying space). Such orthogonal decompositions are shown to be valid for several classes of relations. The relation $A$ is said to have a Cartesian decomposition if $A=U+I V$, where $U$ and $V$ are symmetric relations and the sum is operatorwise. The connection between a Cartesian decomposition of $A$ and the real and imaginary parts of $A$ is investigated.
Linear optical systems acting on photon number states produce many interesting evolutions, but cannot give all the allowed quantum operations on the input state. Using Toponogovs theorem from differential geometry, we propose an iterative method that , for any arbitrary quantum operator $U$ acting on $n$ photons in $m$ modes, returns an operator $widetilde{U}$ which can be implemented with linear optics. The approximation method is locally optimal and converges. The resulting operator $widetilde{U}$ can be translated into an experimental optical setup using previous results.
The Hardy--Littlewood inequalities on $ell _{p}$ spaces provide optimal exponents for some classes of inequalities for bilinear forms on $ell _{p}$ spaces. In this paper we investigate in detail the exponents involved in Hardy--Littlewood type inequa lities and provide several optimal results that were not achieved by the previous approaches. Our first main result asserts that for $q_{1},...,q_{m}>0$ and an infinite-dimensional Banach space $Y$ attaining its cotype $cot Y$, if begin{equation*} frac{1}{p_{1}}+...+frac{1}{p_{m}}<frac{1}{cot Y}, end{equation*} then the following assertions are equivalent: (a) There is a constant $C_{p_{1},...,p_{m}}^{Y}geq 1$ such that begin{equation*} left( sum_{j_{1}=1}^{infty }left( sum_{j_{2}=1}^{infty }cdots left( sum_{j_{m}=1}^{infty }leftVert A(e_{j_{1}},...,e_{j_{m}})rightVert ^{q_{m}}right) ^{frac{q_{m-1}}{q_{m}}}cdots right) ^{frac{q_{1}}{q_{2}} }right) ^{frac{1}{q_{1}}}leq C_{p_{1},...,p_{m}}^{Y}leftVert ArightVert end{equation*} for all continuous $m-$linear operators $A:ell _{p_{1}}times cdots times ell _{p_{m}}rightarrow Y.$ (b) The exponents $q_{1},...,q_{m}$ satisfy begin{equation*} q_{1}geq lambda _{m,cot Y}^{p_{1},...,p_{m}},q_{2}geq lambda _{m-1,cot Y}^{p_{2},...,p_{m}},...,q_{m}geq lambda _{1,cot Y}^{p_{m}}, end{equation*} where, for $k=1,...,m,$ begin{equation*} lambda _{m-k+1,cot Y}^{p_{k},...,p_{m}}:=frac{cot Y}{1-left( frac{1}{ p_{k}}+...+frac{1}{p_{m}}right) cot Y}. end{equation*} As an application of the above result we generalize to the $m$-linear setting one of the classical Hardy--Littlewood inequalities for bilinear forms. Our result is sharp in a very strong sense: the constants and exponents are optimal, even if we consider mixed sums.
The classical as well as non commutative Korovkin-type theorems deal with convergence of positive linear maps with respect to modes of convergences such as norm convergence and weak operator convergence. In this article, Korovkin-type theorems are pr oved for convergence of completely positive maps with respect to weak, strong and uniform clustering of sequences of matrices of growing order. Such modes of convergence were originally considered for Toeplitz matrices (see [23],[26]). As an application, we translate the Korovkin-type approach used in the finite dimensional case, in the setting of preconditioning large linear systems with Toeplitz structure, into the infinite dimensional context of operators acting on separable Hilbert spaces. The asymptotic of these pre-conditioners are obtained and analyzed using the concept of completely positive maps. It is observed that any two limit points of the same sequence of pre-conditioners are the same modulo compact operators. Finally, we prove the generaliz
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا