ﻻ يوجد ملخص باللغة العربية
The classical as well as non commutative Korovkin-type theorems deal with convergence of positive linear maps with respect to modes of convergences such as norm convergence and weak operator convergence. In this article, Korovkin-type theorems are proved for convergence of completely positive maps with respect to weak, strong and uniform clustering of sequences of matrices of growing order. Such modes of convergence were originally considered for Toeplitz matrices (see [23],[26]). As an application, we translate the Korovkin-type approach used in the finite dimensional case, in the setting of preconditioning large linear systems with Toeplitz structure, into the infinite dimensional context of operators acting on separable Hilbert spaces. The asymptotic of these pre-conditioners are obtained and analyzed using the concept of completely positive maps. It is observed that any two limit points of the same sequence of pre-conditioners are the same modulo compact operators. Finally, we prove the generaliz
The Hardy--Littlewood inequalities on $ell _{p}$ spaces provide optimal exponents for some classes of inequalities for bilinear forms on $ell _{p}$ spaces. In this paper we investigate in detail the exponents involved in Hardy--Littlewood type inequa
An arbitrary linear relation (multivalued operator) acting from one Hilbert space to another Hilbert space is shown to be the sum of a closable operator and a singular relation whose closure is the Cartesian product of closed subspaces. This decompos
This paper is a contribution to frame theory. Frames in a Hilbert space are generalizations of orthonormal bases. In particular, Gabor frames of $L^2(mathbb{R})$, which are made of translations and modulations of one or more windows, are often used i
The residual spectrum of a power bounded operator lies in the open unit disk.
In this paper we obtain quite general and definitive forms for Hardy-Littlewood type inequalities. Moreover, when restricted to the original particular cases, our approach provides much simpler and straightforward proofs and we are able to show that