ﻻ يوجد ملخص باللغة العربية
Let $A$ be a, not necessarily closed, linear relation in a Hilbert space $sH$ with a multivalued part $mul A$. An operator $B$ in $sH$ with $ran Bperpmul A^{**}$ is said to be an operator part of $A$ when $A=B hplus ({0}times mul A)$, where the sum is componentwise (i.e. span of the graphs). This decomposition provides a counterpart and an extension for the notion of closability of (unbounded) operators to the setting of linear relations. Existence and uniqueness criteria for the existence of an operator part are established via the so-called canonical decomposition of $A$. In addition, conditions are developed for the decomposition to be orthogonal (components defined in orthogonal subspaces of the underlying space). Such orthogonal decompositions are shown to be valid for several classes of relations. The relation $A$ is said to have a Cartesian decomposition if $A=U+I V$, where $U$ and $V$ are symmetric relations and the sum is operatorwise. The connection between a Cartesian decomposition of $A$ and the real and imaginary parts of $A$ is investigated.
An arbitrary linear relation (multivalued operator) acting from one Hilbert space to another Hilbert space is shown to be the sum of a closable operator and a singular relation whose closure is the Cartesian product of closed subspaces. This decompos
In two dimensional regular local rings integrally closed ideals have a unique factorization property and have a Cohen-Macaulay associated graded ring. In higher dimension these properties do not hold for general integrally closed ideals and the goal
Let $G$ be a finite connected graph on two or more vertices and $G^{[N,k]}$ the distance $k$-graph of the $N$-fold Cartesian power of $G$. For a fixed $kge1$, we obtain explicitly the large $N$ limit of the spectral distribution (the eigenvalue distr
We extend a theorem of Kato on similarity for sequences of projections in Hilbert spaces to the case of isomorphic Schauder decompositions in certain Banach spaces. To this end we use $ell_{Psi}$-Hilbertian and $infty$-Hilbertian Schauder decompositi
We study generalized polar decompositions of densely defined, closed linear operators in Hilbert spaces and provide some applications to relatively (form) bounded and relatively (form) compact perturbations of self-adjoint, normal, and m-sectorial operators.