ترغب بنشر مسار تعليمي؟ اضغط هنا

The action of the mapping class group on maximal representations

68   0   0.0 ( 0 )
 نشر من قبل Anna Wienhard
 تاريخ النشر 2006
  مجال البحث
والبحث باللغة English
 تأليف Anna Wienhard




اسأل ChatGPT حول البحث

We show that the mapping class group acts properly on the space of maximal representations of the fundamental group of a closed Riemann surface into G when G = Sp(2n,R), SU(n,n), SO*(2n) or Spin(2,n).



قيم البحث

اقرأ أيضاً

We prove that various subgroups of the mapping class group $Mod(Sigma)$ of a surface $Sigma$ are at least exponentially distorted. Examples include the Torelli group (answering a question of Hamenstadt), the point-pushing and surface braid subgroups, and the Lagrangian subgroup. Our techniques include a method to compute lower bounds on distortion via representation theory and an extension of Johnson theory to arbitrary subgroups of $H_1(Sigma;mathbb{Z})$.
353 - Andrew Putman 2017
We calculate the abelianizations of the level $L$ subgroup of the genus $g$ mapping class group and the level $L$ congruence subgroup of the $2g times 2g$ symplectic group for $L$ odd and $g geq 3$.
155 - Andrew Putman 2009
For some $g geq 3$, let $Gamma$ be a finite index subgroup of the mapping class group of a genus $g$ surface (possibly with boundary components and punctures). An old conjecture of Ivanov says that the abelianization of $Gamma$ should be finite. In t his note, we prove two theorems supporting this conjecture. For the first, let $T_x$ denote the Dehn twist about a simple closed curve $x$. For some $n geq 1$, we have $T_x^n in Gamma$. We prove that $T_x^n$ is torsion in the abelianization of $Gamma$. Our second result shows that the abelianization of $Gamma$ is finite if $Gamma$ contains a large chunk (in a certain technical sense) of the Johnson kernel, that is, the subgroup of the mapping class group generated by twists about separating curves. This generalizes work of Hain and Boggi.
We propose an encoding for topological quantum computation utilizing quantum representations of mapping class groups. Leakage into a non-computational subspace seems to be unavoidable for universality in general. We are interested in the possible gat e sets which can emerge in this setting. As a first step, we prove that for abelian anyons, all gates from these mapping class group representations are normalizer gates. Results of Van den Nest then allow us to conclude that for abelian anyons this quantum computing scheme can be simulated efficiently on a classical computer. With an eye toward more general anyon models we additionally show that for Fibonnaci anyons, quantum representations of mapping class groups give rise to gates which are not generalized Clifford gates.
Let $M_n$ be the connect sum of $n$ copies of $S^2 times S^1$. A classical theorem of Laudenbach says that the mapping class group $text{Mod}(M_n)$ is an extension of $text{Out}(F_n)$ by a group $(mathbb{Z}/2)^n$ generated by sphere twists. We prove that this extension splits, so $text{Mod}(M_n)$ is the semidirect product of $text{Out}(F_n)$ by $(mathbb{Z}/2)^n$, which $text{Out}(F_n)$ acts on via the dual of the natural surjection $text{Out}(F_n) rightarrow text{GL}_n(mathbb{Z}/2)$. Our splitting takes $text{Out}(F_n)$ to the subgroup of $text{Mod}(M_n)$ consisting of mapping classes that fix the homotopy class of a trivialization of the tangent bundle of $M_n$. Our techniques also simplify various aspects of Laudenbachs original proof, including the identification of the twist subgroup with $(mathbb{Z}/2)^n$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا