ترغب بنشر مسار تعليمي؟ اضغط هنا

The mapping class group of connect sums of $S^2 times S^1$

239   0   0.0 ( 0 )
 نشر من قبل Andrew Putman
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $M_n$ be the connect sum of $n$ copies of $S^2 times S^1$. A classical theorem of Laudenbach says that the mapping class group $text{Mod}(M_n)$ is an extension of $text{Out}(F_n)$ by a group $(mathbb{Z}/2)^n$ generated by sphere twists. We prove that this extension splits, so $text{Mod}(M_n)$ is the semidirect product of $text{Out}(F_n)$ by $(mathbb{Z}/2)^n$, which $text{Out}(F_n)$ acts on via the dual of the natural surjection $text{Out}(F_n) rightarrow text{GL}_n(mathbb{Z}/2)$. Our splitting takes $text{Out}(F_n)$ to the subgroup of $text{Mod}(M_n)$ consisting of mapping classes that fix the homotopy class of a trivialization of the tangent bundle of $M_n$. Our techniques also simplify various aspects of Laudenbachs original proof, including the identification of the twist subgroup with $(mathbb{Z}/2)^n$.



قيم البحث

اقرأ أيضاً

344 - Andrew Putman 2017
We calculate the abelianizations of the level $L$ subgroup of the genus $g$ mapping class group and the level $L$ congruence subgroup of the $2g times 2g$ symplectic group for $L$ odd and $g geq 3$.
We construct a minimal generating set of the level 2 mapping class group of a nonorientable surface of genus $g$, and determine its abelianization for $gge4$.
147 - Andrew Putman 2009
For some $g geq 3$, let $Gamma$ be a finite index subgroup of the mapping class group of a genus $g$ surface (possibly with boundary components and punctures). An old conjecture of Ivanov says that the abelianization of $Gamma$ should be finite. In t his note, we prove two theorems supporting this conjecture. For the first, let $T_x$ denote the Dehn twist about a simple closed curve $x$. For some $n geq 1$, we have $T_x^n in Gamma$. We prove that $T_x^n$ is torsion in the abelianization of $Gamma$. Our second result shows that the abelianization of $Gamma$ is finite if $Gamma$ contains a large chunk (in a certain technical sense) of the Johnson kernel, that is, the subgroup of the mapping class group generated by twists about separating curves. This generalizes work of Hain and Boggi.
We prove that various subgroups of the mapping class group $Mod(Sigma)$ of a surface $Sigma$ are at least exponentially distorted. Examples include the Torelli group (answering a question of Hamenstadt), the point-pushing and surface braid subgroups, and the Lagrangian subgroup. Our techniques include a method to compute lower bounds on distortion via representation theory and an extension of Johnson theory to arbitrary subgroups of $H_1(Sigma;mathbb{Z})$.
Let $k$ be a subring of the field of rational functions in $x, v, s$ which contains $x^{pm 1}, v^{pm 1}, s^{pm 1}$. If $M$ is an oriented 3-manifold, let $S(M)$ denote the Homflypt skein module of $M$ over $k$. This is the free $k$-module generated b y isotopy classes of framed oriented links in $M$ quotiented by the Homflypt skein relations: (1) $x^{-1}L_{+}-xL_{-}=(s-s^{-1})L_{0}$; (2) $L$ with a positive twist $=(xv^{-1})L$; (3) $Lsqcup O=(frac{v-v^{-1}}{s-s^{-1}})L$ where $O$ is the unknot. We give two bases for the relative Homflypt skein module of the solid torus with 2 points in the boundary. The first basis is related to the basis of $S(S^1times D^2)$ given by V. Turaev and also J. Hoste and M. Kidwell; the second basis is related to a Young idempotent basis for $S(S^1times D^2)$ based on the work of A. Aiston, H. Morton and C. Blanchet. We prove that if the elements $s^{2n}-1$, for $n$ a nonzero integer, and the elements $s^{2m}-v^{2}$, for any integer $m$, are invertible in $k$, then $S(S^{1} times S^2)=k$-torsion module $oplus k$. Here the free part is generated by the empty link $phi$. In addition, if the elements $s^{2m}-v^{4}$, for $m$ an integer, are invertible in $k$, then $S(S^{1} times S^2)$ has no torsion. We also obtain some results for more general $k$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا