ﻻ يوجد ملخص باللغة العربية
For some $g geq 3$, let $Gamma$ be a finite index subgroup of the mapping class group of a genus $g$ surface (possibly with boundary components and punctures). An old conjecture of Ivanov says that the abelianization of $Gamma$ should be finite. In this note, we prove two theorems supporting this conjecture. For the first, let $T_x$ denote the Dehn twist about a simple closed curve $x$. For some $n geq 1$, we have $T_x^n in Gamma$. We prove that $T_x^n$ is torsion in the abelianization of $Gamma$. Our second result shows that the abelianization of $Gamma$ is finite if $Gamma$ contains a large chunk (in a certain technical sense) of the Johnson kernel, that is, the subgroup of the mapping class group generated by twists about separating curves. This generalizes work of Hain and Boggi.
The orbifold group of the Borromean rings with singular angle 90 degrees, $U$, is a universal group, because every closed oriented 3--manifold $M^{3}$ occurs as a quotient space $M^{3} = H^{3}/G$, where $G$ is a finite index subgroup of $U$. Therefor
These are the lecture notes for my course at the 2011 Park City Mathematics Graduate Summer School. The first two lectures covered the basics of the Torelli group and the Johnson homomorphism, and the third and fourth lectures discussed the second co
Let $S$ be a compact orientable surface, and $Mod(S)$ its mapping class group. Then there exists a constant $M(S)$, which depends on $S$, with the following property. Suppose $a,b in Mod(S)$ are independent (i.e., $[a^n,b^m] ot=1$ for any $n,m ot=
We calculate the abelianizations of the level $L$ subgroup of the genus $g$ mapping class group and the level $L$ congruence subgroup of the $2g times 2g$ symplectic group for $L$ odd and $g geq 3$.
In this paper, we prove a combination theorem for indicable subgroups of infinite-type (or big) mapping class groups. Importantly, all subgroups from the combination theorem, as well as those from the other results of the paper, can be constructed so