ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-Scaling of the $n$-point density function for coalescing Brownian motions

81   0   0.0 ( 0 )
 نشر من قبل Ranjiva Munasinghe
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper gives a derivation for the large time asymptotics of the $n$-point density function of a system of coalescing Brownian motions on $bf{R}$.



قيم البحث

اقرأ أيضاً

We consider a family of free multiplicative Brownian motions $b_{s,tau}$ parametrized by a positive real number $s$ and a nonzero complex number $tau$ satisfying $leftvert tau-srightvert leq s,$ with an arbitrary unitary initial condition. We compute the Brown measure $mu_{s,tau}$ of $b_{s,tau}$ and find that it has a simple structure, with a density in logarithmic coordinates that is constant in the $tau$-direction. We also find that all the Brown measures with $s$ fixed and $tau$ varying are related by pushforward under a natural family of maps. Our results generalize those of Driver-Hall-Kemp and Ho-Zhong for the case $tau=s.$ We use a version of the PDE method introduced by Driver-Hall-Kemp, but with some significant technical differences.
177 - Olivier Raimond 2010
We study a natural continuous time version of excited random walks, introduced by Norris, Rogers and Williams about twenty years ago. We obtain a necessary and sufficient condition for recurrence and for positive speed. This is analogous to results for excited (or cookie) random walks.
The first-passage-time problem for a Brownian motion with alternating infinitesimal moments through a constant boundary is considered under the assumption that the time intervals between consecutive changes of these moments are described by an altern ating renewal process. Bounds to the first-passage-time density and distribution function are obtained, and a simulation procedure to estimate first-passage-time densities is constructed. Examples of applications to problems in environmental sciences and mathematical finance are also provided.
We prove the existence of the intersection local time for two independent, d -dimensional fractional Brownian motions with the same Hurst parameter H. Assume d greater or equal to 2, then the intersection local time exists if and only if Hd<2.
121 - J. Beltran , E. Chavez , C. Landim 2018
Let $mathbb{T}^d_N$, $dge 2$, be the discrete $d$-dimensional torus with $N^d$ points. Place a particle at each site of $mathbb{T}^d_N$ and let them evolve as independent, nearest-neighbor, symmetric, continuous-time random walks. Each time two parti cles meet, they coalesce into one. Denote by $C_N$ the first time the set of particles is reduced to a singleton. Cox [6] proved the existence of a time-scale $theta_N$ for which $C_N/theta_N$ converges to the sum of independent exponential random variables. Denote by $Z^N_t$ the total number of particles at time $t$. We prove that the sequence of Markov chains $(Z^N_{ttheta_N})_{tge 0}$ converges to the total number of partitions in Kingmans coalescent.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا