ﻻ يوجد ملخص باللغة العربية
The first-passage-time problem for a Brownian motion with alternating infinitesimal moments through a constant boundary is considered under the assumption that the time intervals between consecutive changes of these moments are described by an alternating renewal process. Bounds to the first-passage-time density and distribution function are obtained, and a simulation procedure to estimate first-passage-time densities is constructed. Examples of applications to problems in environmental sciences and mathematical finance are also provided.
Let $B^{alpha_i}$ be an $(N_i,d)$-fractional Brownian motion with Hurst index ${alpha_i}$ ($i=1,2$), and let $B^{alpha_1}$ and $B^{alpha_2}$ be independent. We prove that, if $frac{N_1}{alpha_1}+frac{N_2}{alpha_2}>d$, then the intersection local time
In this paper we study first-passge percolation models on Delaunay triangulations. We show a sufficient condition to ensure that the asymptotic value of the rescaled first-passage time, called the time constant, is strictly positive and derive some u
Many events in biology are triggered when a diffusing searcher finds a target, which is called a first passage time (FPT). The overwhelming majority of FPT studies have analyzed the time it takes a single searcher to find a target. However, the more
In this paper we prove exact forms of large deviations for local times and intersection local times of fractional Brownian motions and Riemann-Liouville processes. We also show that a fractional Brownian motion and the related Riemann-Liouville proce
The time it takes the fastest searcher out of $Ngg1$ searchers to find a target determines the timescale of many physical, chemical, and biological processes. This time is called an extreme first passage time (FPT) and is typically much faster than t