ﻻ يوجد ملخص باللغة العربية
Let $mathbb{T}^d_N$, $dge 2$, be the discrete $d$-dimensional torus with $N^d$ points. Place a particle at each site of $mathbb{T}^d_N$ and let them evolve as independent, nearest-neighbor, symmetric, continuous-time random walks. Each time two particles meet, they coalesce into one. Denote by $C_N$ the first time the set of particles is reduced to a singleton. Cox [6] proved the existence of a time-scale $theta_N$ for which $C_N/theta_N$ converges to the sum of independent exponential random variables. Denote by $Z^N_t$ the total number of particles at time $t$. We prove that the sequence of Markov chains $(Z^N_{ttheta_N})_{tge 0}$ converges to the total number of partitions in Kingmans coalescent.
Full likelihood inference under Kingmans coalescent is a computationally challenging problem to which importance sampling (IS) and the product of approximate conditionals (PAC) method have been applied successfully. Both methods can be expressed in t
The main results in this paper are about the full coalescence time $mathsf{C}$ of a system of coalescing random walks over a finite graph $G$. Letting $mathsf{m}(G)$ denote the mean meeting time of two such walkers, we give sufficient conditions unde
We prove new results on lazy random walks on finite graphs. To start, we obtain new estimates on return probabilities $P^t(x,x)$ and the maximum expected hitting time $t_{rm hit}$, both in terms of the relaxation time. We also prove a discrete-time v
For $dge 3$ we construct a new coupling of the trace left by a random walk on a large $d$-dimensional discrete torus with the random interlacements on $mathbb Z^d$. This coupling has the advantage of working up to macroscopic subsets of the torus. As
We construct admissible circulant Laplacian matrix functions as generators for strictly increasing random walks on the integer line. These Laplacian matrix functions refer to a certain class of Bernstein functions. The approach has connections with b